Децибелы ЭТО ОЧЕНЬ ПРОСТО!

Ю.БАЛТИН (YL2DX),
г.Рига.
Когда требуется сравнить какие-нибудь величины, это можно сделать по-разному. Можно, например, разделив эти величины одну на другую, сказать — Р1 больше чем Р2 в 3 раза, или Р1, меньше чем Р2 в 28 раз. Если нам понадобится далее вести какие-то расчеты, мы будем пользоваться отвлеченными числами 3, или 28, или 1/28 (иногда для уточнения добавляя слово "раз").

Децибелы ЭТО ОЧЕНЬ ПРОСТО! - 948258061648

В ряде случаев для расчетов или для большей наглядности сравнения оказывается удобнее логарифмировать отношение величин и оперировать далее с числом logа(Р1/Р2). Известно, что применение логарифмов упрощает математические расчеты, в частности, позволяет вместо умножения и деления пользоваться сложением и вычитанием. При большом диапазоне изменений какой-либо величины логарифмический масштаб позволяет лучше разглядеть на одном и том же графике и малые, и большие ее относительные изменения.

Чтобы различать, имеем ли мы дело с числом "раз" или с его логарифмом, а также чтобы зафиксировать, каким основанием мы пользуемся при логарифмировании (числом 10, числом e=2,71828 или иным), следует присвоить этому логарифму какое-нибудь название. В системе СИ в качестве относительной логарифмической единицы отношения мощностей Р1, и Р2 принят десятичный логарифм Ig(Р1/Р2). Эта единица называется бел (Б).

На практике этой довольно крупной единицей оказалось не очень удобно оперировать, поэтому ее "разменивают" на единицы, в десять раз меньшие — децибелы. Соотношение двух уровней мощности Р1 и Р2 в децибелах (дБ, или dB) выражают по следующей формуле:

Decibely_ETO_OCHEN'_PROSTO!-1.gif

Множитель 10 в формуле (1) появился потому, что десять децибел как раз и есть один бел. Таким образом, не повезло изобретателю телефона А.Г.Беллу — мало того, что единицу его имени укоротили на одну букву "л", так еще и пользуются лишь десятыми долями.

Теперь разберемся с отношениями напряжений или токов. Вспомним из школьного курса, что мощность в линейной цепи равна:

Decibely_ETO_OCHEN'_PROSTO!-2.gif

Отсюда легко видеть, что:

Decibely_ETO_OCHEN'_PROSTO!-3.gif

а значит:

Decibely_ETO_OCHEN'_PROSTO!-4.gif

Из школьного же курса вспомним:

Decibely_ETO_OCHEN'_PROSTO!-5.gif

Из равенств (2) и (3) вытекает следующее:

Decibely_ETO_OCHEN'_PROSTO!-6.gif

Это и есть формула взаимосвязи между "белами по мощности" и "белами по напряжению" в одной и той же цепи, если в ней выполняется закон Ома. Ну, а если мы намерены пользоваться десятыми долями бела, то обе половины этого уравнения необходимо умножить на 10. Отсюда следует, что при сравнении величин напряжений (U1 и U2) или токов (I1 и l2), их соотношение в децибелах:

Decibely_ETO_OCHEN'_PROSTO!-7.gif

Полезно запомнить несколько характерных значений, приведенных в таблице.

Если напряжение на резисторе увеличить вдвое (на +6 дБ "по напряжению"), то и протекающий через него ток увеличится вдвое (на +6 дБ "по току"), а мощность, выделяемая этим резистором, станет вчетверо больше—опять-таки на +6 дБ ("по мощности"). Чтобы уменьшить мощность в 10 раз (-10 дБ), нужно снизить приложенное к резистору напряжение в 3,162 раза (-10 дБ), отчего ток по закону Ома тоже уменьшится в 3,162 раза (-10 дБ).

Поскольку мощность в линейной цепи пропорциональна квадрату напряжения или тока, численные значения соотношений их величин, выраженные в децибелах, остаются одними и теми же как при сравнении мощностей, так и при сравнении напряжений или токов:

Decibely_ETO_OCHEN'_PROSTO!-8.gif

В случае ослабления сигнала (когда отношение Р1/Р2 меньше единицы), логарифм становится отрицательным, следовательно, отрицательным становится и коэффициент передачи данной цепи, выраженный в децибелах. Для вычисления общего коэффициента передачи нескольких последовательно соединенных цепей или устройств достаточно просуммировать значения в децибелах с учетом их знаков (+) или (-). Это

намного удобнее, чем перемножать исходные значения в разах.

При вычислении коэффициента передачи различных устройств (например, усилительного каскада) во многих случаях мы имеем дело с разными входным и выходным сопротивлениями; в нелинейных цепях напряжение и ток взаимно не пропорциональны, а мощность не связана с тем и другим квадратичной зависимостью. Коэффициенты передачи таких цепей по току:

Decibely_ETO_OCHEN'_PROSTO!-9.gif

и по напряжению:

Decibely_ETO_OCHEN'_PROSTO!-10.gif

различны и в разах, и в децибелах; коэффициент передачи по мощности:

Decibely_ETO_OCHEN'_PROSTO!-11.gif

а в децибелах:

Decibely_ETO_OCHEN'_PROSTO!-12.gif

поскольку

Decibely_ETO_OCHEN'_PROSTO!-13.gif

Равенство (6) к этим случаям не относится, но по отдельности изменения или соотношения величин тока или напряжения на одном и том же линейном сопротивлении (например, на сопротивлении нагрузки нелинейного усилителя) все равно выражаются в децибелах формулами (4) и (5), а изменения уровня мощности — формулой (1).

Зачем возиться с логарифмами? Во-первых, логарифмическая шкала наиболее естественна для наших органов чувств, в частности, для слуха. Закон логарифмической зависимости ощущений от силы воздействия сформулирован Вебером и Фехнером (обычно называется законом Вебера) — "одинаковые относительные изменения раздражающей силы вызывают одинаковые приращения слухового ощущения, т.е. слуховое ощущение пропорционально логарифму раздражающей силы".

Практически, 1 дБ — это наименьшая ступенька изменения интенсивности звука, едва обнаруживаемая на слух, изменение на 6 дБ воспринимается на слух как хорошо заметное (но небольшое — примерно вдвое громче), на 10 дБ — значительное, а на 20 дБ—как весьма большое. Каждый балл по шкале S системы RST — это 6 дБ (или 0,6 бела), так что мы, особо не задумываясь, занимаемся логарифмированием каждый раз, когда начинаем очередную связь в эфире, передавая рапорт корреспонденту.

Во-вторых, значения величин, с которыми нередко приходится сталкиваться, в обычном исчислении бывает трудно соразмерить—скажем, 1 микровольт отличается от 1 киловольта в 1 000 000 000 раз. А в децибелах разница выражается вполне удобной величиной 180 дБ. Мощности, которые выделятся на одном и том же сопротивлении при приложении к нему этих напряжений, будут отличаться астрономически — в 1 000 000 000 000 000 000 раз, а в децибелах — все на те же 180 дБ. С другой стороны, если, например, сравнивать 1,03 мА и 1,37 мА, то их отличие выразится вполне заметной величиной — 2,5 дБ.

Комментарии

Комментариев нет.