Попробуйте на своих знакомых этот интересный математический трюк! Следующий трюк существует уже не одно столетие. Сделайте так, чтобы человек из аудитории достал ручку и бумагу: 1) и тайно записал трехзначное число, цифры которого идут в порядке уменьшения (например, 851 или 973); 2) записал число в обратном порядке и вычел его из исходного числа; 3) к полученному ответу добавил его же, только в обратном порядке. В конце последовательности магическим образом появится ответ 1089, какое бы число ни выбрал доброволец. Например: 851 – 158 = 693, 693 + 396 = 1089. Независимо от того, какое трехзначное число вы или кто либо другой выберете в этой игре, окончательный ответ всегда будет равен 1089. Почему? Обозначим аbс неизвестное трехзначное число. Алгебраически это эквивалентно: 100a + 10b + c. Запись числа в обратном порядке (для вычитания из исходного) дает сbа, которое алгебраически равно: 100c + 10b + a. После вычитания сbа из аbс выходит: 100a + 10b + c – (100c + 10b + a) = = 100(a – c) + (c – a) = 99(a – c). Поэтому после вычитания на шаге 2 должно получиться одно из следующих чисел, кратных 99: 297, 396, 495, 594, 693, 792 или 891. Каждое из них после прибавления к нему своей перевернутой версии в итоге даст 1089, что мы и видим на шаге 3!
Музей занимательных наук Эйнштейна в Волгограде
Магия числа 1089.
Попробуйте на своих знакомых этот интересный математический трюк!
Следующий трюк существует уже не одно столетие. Сделайте так, чтобы человек из аудитории достал ручку и бумагу:
1) и тайно записал трехзначное число, цифры которого идут в порядке уменьшения (например, 851 или 973);
2) записал число в обратном порядке и вычел его из исходного числа;
3) к полученному ответу добавил его же, только в обратном порядке.
В конце последовательности магическим образом появится ответ 1089, какое бы число ни выбрал доброволец. Например: 851 – 158 = 693, 693 + 396 = 1089.
Независимо от того, какое трехзначное число вы или кто либо другой выберете в этой игре, окончательный ответ всегда будет равен 1089. Почему? Обозначим аbс неизвестное трехзначное число. Алгебраически это эквивалентно: 100a + 10b + c. Запись числа в обратном порядке (для вычитания из исходного) дает сbа, которое алгебраически равно: 100c + 10b + a. После вычитания сbа из аbс выходит: 100a + 10b + c – (100c + 10b + a) = = 100(a – c) + (c – a) = 99(a – c).
Поэтому после вычитания на шаге 2 должно получиться одно из следующих чисел, кратных 99: 297, 396, 495, 594, 693, 792 или 891. Каждое из них после прибавления к нему своей перевернутой версии в итоге даст 1089, что мы и видим на шаге 3!