МЫСЛИ. ЛОГИЧЕСКИЕ ЗАКОНЫ Для уяснения специфики предмета логики и особенно специфики изучаемых ею законов необходимо установить понятия логической формы и логического содержания мыс- ли. Это понятия высокого теоретического уровня и сложно- сти. Для точного их определения используются специальные формализованные языки. Здесь возможно лишь предвари- тельное знакомство с ними. Рассмотрим понятия логической формы и содержания мысли на примере такого наиболее знакомого читателю вида знания, как высказывания (суждения1), в которых утвержда- ется наличие иди отсутствие какой-либо ситуации в познава- емой области действительности. Мы имеем, например, такие простые высказывания как «2 — простое число», «Волга впа- дает в Каспийское море», «Все жидкости упруги», «Некото- рые кислоты не содержат кислорода», и сложные: «Луна вращается вокруг Земли, а Земля — вокруг Солнца» «Все кислоты содержат кислород или некоторые не содержат его». Про высказывания (суждения), как и про понятия, тео- рии говорят (и мы будем говорить), что они являются осо- быми формами знания. «Формы» здесь означают виды знания, то есть речь идет об особых видах знания. Но каждое конкретное суждение (как и понятие), будучи вы- раженным в некотором языке и при этом достаточно точ- ным образом, наряду с определенной знаковой (языковой) формой, имеет также логическую форму, а наряду с опреде- ленным конкретным содержанием, — логическое содержа- ние (здесь, поскольку речь идет о суждении с определенной знаковой формой, естественнее говорить о логической фор- ме и о логическом содержании высказывания). Рассмотрим эти понятия на примере следующих высказываний: «Все ме- таллы суть химически простые вещества» и «Если вода (при нормальном давлении) нагрета до 100°С, то она закипает». Вопрос о том, каковы здесь знаковые формы, не требует, очевидно, разъяснений. Конкретное содержание мысли в первом случае состоит, как видно, в утверждении, что каж- дый предмет, который мы характеризуем свойством метал- личности, обладает свойством химической простоты, то есть состоит из однородных атомов. Чтобы выявить логическую 1 Одно и то же суждение может быть выражено в разных языках и даже в разных знаковых формах в пределах одного языка. Когда суждение рассматривается в связи с какой-то конкретной формой его языкового вы- ражения, оно называется «высказыванием». Термин же «суждение» для него мы употребляем, когда отвлекаемся от того, какова именно его знако- вая форма. 22 форму и логическое содержание этого суждения надо от- влечься от того, каковы именно те конкретные предметы, о которых в нем что-то утверждается, и каковы именно те конкретные свойства или отношения, наличие которых у этих предметов утверждается. Отвлекаясь от того, что речь идет здесь о металлах, мы можем обозначить их просто пе- ременной S, а вместо свойства «химически простое веще- ство» ввести переменную Р. Тогда вместо данного конкрет- ного суждения получаем его логическую форму: Все 5 суть Р. Это выражение обладает еще определенным содержани- ем, оно в определенной степени осмысленно, а именно, в нем утверждается, что всякий предмет, обладающий каким- то свойством 5, имеет свойство Р. Это содержание, которое представляет логическая форма высказывания, и называется логическим содержанием высказывания. Читатель теперь сам, очевидно, установит, что для того чтобы выявить логическую форму второго из взятых нами высказываний, надо отвлечься от конкретного предмета, а в данном случае воды. Результатом отвлечения будет введение некоторой переменной для его обозначения, например, а. Вместе с тем отвлекаемся от того, о каких именно свойствах этого предмета идет речь, заменяя опять их знаковые формы переменными: «нагретость до 100°С» обозначим Pv а «заки- пает» — Р2. В итоге получим: Если а есть Pv то а есть РТ Логическое содержание состоит здесь в указании на связь между наличием у предмета одного свойства Рх и нали- чием другого — Р2. Тут же логическую форму имеет высказывание: «Если сумма цифр числа 353 делится на 3, то само это число делит- ся на 3». Читатель, наверное, усмотрел уже, что при выявлении ло- гических форм высказываний в приведенных случаях мы до- пускали определенные огрубления: игнорировали, например, различие между структурами таких свойств, как «нагреть до 100°С» и «закипает». В первом случае налицо некоторое от- ношение между водой и температурой 100°С. Есть суще- ственная разница между свойствами «делимость суммы 23 цифр числа на 3» и «делимость самого числа на 3», которую мы также не принимали во внимание. Все дело в том, что ло- гические формы мысли можно выявлять с той или иной сте- пенью точности, с учетом или без учета тех или иных струк- турных особенностей свойств, отношений, как и самих пред- метов. Все зависит от того, с какой целью, в каких ситуаци- ях, для решения каких задач нам необходимо выявить логи- ческую форму той или иной мысли. Иногда мы можем вооб- ще отвлекаться от структур высказываний, составляющих другие — сложные — высказывания, и, например, в каче- стве логической формы вышеприведенных высказываний о делимости числа, о кипении воды получить выражение: Если р, то q, где р и q — переменные для высказываний (пропозицио- нальные переменные). Возьмем высказывание: «Если наш мир лучший из миров, то все люди в нем должны быть счастливы». Рассматривая свойства «лучший из миров» и «всякий человек — в нем — должен быть счастлив» как простые, получим форму данного высказывания, аналогичную предыдущей: Если а есть Pv то а есть Р2 Если же учтем структуру второго свойства «Всякий чело- век, если он живет в нашем мире, то он счастлив», будем иметь: «если а есть Pv то все 5 суть Р2 (если SRa, то 5 есть О)», где R — отношение «живет». Читателю предлагается теперь самому выявить логическую структуру также первого из ука- занных свойств и соответственно форму всего высказывания с учетом структуры этого свойства. Не имея возможности вдаваться здесь во многие подробности (см. гл. И, 6), заметим, однако, что в каждом высказывании мы различаем дескриптивные термины и логические. Дескриптив- ные — это термины, обозначающие предметы, свойства, отноше- ния. К числу логических терминов относятся в наших примерах та- кие знаковые выражения, как «все», «некоторые», «и», «если..., то...» и др. Именно логические термины и определяют логические содержания высказываний и именно наличие логических операций и отношений, которые обозначаются логическими терминами, ха- рактеризуют специфику воспроизведения действительности в мышлении. Правда, в мышлении не все логические связи фиксиру- ются явным образом посредством специальных логических терми- нов1. Логические термины и являются, в частности, тем инстру- ментарием, с помощью которого осуществляется упоминавшаяся выше синтетическая деятельность мышления. Посредством их про- исходит соотнесение свойств и отношений, зафиксированных в языке первоначально в отрыве от предметов, с теми или иными оп- ределенными предметами. Речь идет о той именно синтезирующей деятельности мышления, которая осуществляется в формах выска- зываний (суждений). Несколько упрощенно логическую форму иногда определяют как «способ связи в мысли частей мыслимого содержания». «Мыс- лимое содержание» здесь, очевидно, конкретное содержание мыс- ли в отличие от логического — связанное со значениями дескрип- тивных терминов, а сам «способ связи» характеризуется логиче- скими терминами. Вообще, для того, чтобы точно выявить логическую форму не- которой мысли, необходима точная и полная ее формулировка2, содержащая все ее аспекты. Иначе — при выявлении логической формы — может быть не учтена какая-то часть некоторого кон- кретного содержания, а тем самым и потеряно нечто в логическом содержании. Неполнота формулировки может иметь место, когда, например, не учитывается сложная структура тех или иных признаков, как это было в одном из приведенных примеров. В высказывании «Всякий человек имеет мать» «имеет» — не отношение; здесь под- разумевается утверждение о существовании для каждого человека некоторого другого человека такого, который находится в опреде- ленном отношении к первому, а именно в том отношении, которое обозначает слово «мать». Здесь видны трудности выявления точного смысла и логиче- ской формы высказываний в естественном языке. Когда утвержда- ются какие-то отношения между предметами одного и того же класса, возникает необходимость к общему обозначению предме- тов этого класса (как в данном случае — «человек») добавлять либо нумерацию (человек^ человек2...), либо вводить специальные сим- 1 Логическую форму имеют, конечно, и такие суждения, как «Луна — холодное небесное тело», «Солнце — раскаленное тело», «Медь — металл», в формулировках которых нет специальных логических терминов, однако, здесь подразумевается наличие логического отношения принадлежности свойства предмету. 2 Точная и полная формулировка мысли нужным образом достигается в специальных, формализованных, определенным образом стандартизиро- ванных языках (см. гл. III), в чем и состоит их важное значение для логики. волы переменных X, Y, ..., употребляя выражения «человек X», «че- ловек У», как это и делается в формализованных языках. В тех или иных случаях, в зависимости от решаемых задач, мы можем, как уже было сказано, опускать какие-то стороны содер- жания. Но «опускать» — не значит «вообще не замечать и не учи- тывать». Следует добавить также, что, выявляя логическую форму, при замене терминов с конкретным содержанием — знаков предме- тов, свойств, отношений — мы заменяем их переменными соот- ветствующих типов, то есть знаками, под которыми подразумева- ются объекты тех же типов; причем один и тот же термин, если он встречается в выражении не один раз, заменяется одной и той же переменной, а различные — различными. При этом употребля- ются переменные особого вида, так называемые «переменные — параметры», или, иначе говоря, «фиксированные переменные», в отличие от так называемых «квантифицированных переменных» (см. гл. III, § 10). Вообще, логические формы высказываний, как и их логи- ческие содержания, необходимы для выявления законов ло- гики, лежащих в основе правильных форм рассуждений (умозаключений). Логические законы представляют собой связи, в частно- сти, между высказываниями того или иного языка, завися- щие только от их логических содержаний, а тем самым, от их логических форм. Сами они выражаются обычно также в формах некоторых высказываний того же языка, но с ис- пользованием нужных переменных. Законами являются, на- пример: Если все S суть Р, то ни одно не-Р не есть S; Если все S суть Р, то некоторые Р суть S; Если неверно, что некоторые S есть Р, то ни одно S не есть Р. Каждый из указанных законов определяет форму пра- вильного умозаключения. Например, от истинности высказы- вания вида «Все 5 суть Р» можно с гарантией заключить об истинности высказываний вида «Ни одно не-Р не суть 5» и вида «Некоторые Р суть 5». Так, если вместо 5 и Р использо- вать, соответственно, «металл» и «электропроводящее веще- ство», то ясно, что при истинности высказывания «Все метал- лы суть электропроводящие вещества», обязательно истинны- ми будут и высказывания «Ни одно неэлектропроводящее ве- щество не есть металл» и «Некоторые электропроводящие ве- щества есть металлы». • Высказывания, выражающие законы логики, истинны при лю- бых значениях содержащихся в них переменных (именно тех переменных, которые мы вводим, выявляя логические формы высказываний).
логика
:Олеся Валерьевна
ЛОГИЧЕСКАЯ ФОРМА И ЛОГИЧЕСКОЕ СОДЕРЖАНИЕ
МЫСЛИ. ЛОГИЧЕСКИЕ ЗАКОНЫ
Для уяснения специфики предмета логики и особенно
специфики изучаемых ею законов необходимо установить
понятия логической формы и логического содержания мыс-
ли. Это понятия высокого теоретического уровня и сложно-
сти. Для точного их определения используются специальные
формализованные языки. Здесь возможно лишь предвари-
тельное знакомство с ними.
Рассмотрим понятия логической формы и содержания
мысли на примере такого наиболее знакомого читателю вида
знания, как высказывания (суждения1), в которых утвержда-
ется наличие иди отсутствие какой-либо ситуации в познава-
емой области действительности. Мы имеем, например, такие
простые высказывания как «2 — простое число», «Волга впа-
дает в Каспийское море», «Все жидкости упруги», «Некото-
рые кислоты не содержат кислорода», и сложные: «Луна
вращается вокруг Земли, а Земля — вокруг Солнца» «Все
кислоты содержат кислород или некоторые не содержат
его».
Про высказывания (суждения), как и про понятия, тео-
рии говорят (и мы будем говорить), что они являются осо-
быми формами знания. «Формы» здесь означают
виды знания, то есть речь идет об особых видах знания.
Но каждое конкретное суждение (как и понятие), будучи вы-
раженным в некотором языке и при этом достаточно точ-
ным образом, наряду с определенной знаковой (языковой)
формой, имеет также логическую форму, а наряду с опреде-
ленным конкретным содержанием, — логическое содержа-
ние (здесь, поскольку речь идет о суждении с определенной
знаковой формой, естественнее говорить о логической фор-
ме и о логическом содержании высказывания). Рассмотрим
эти понятия на примере следующих высказываний: «Все ме-
таллы суть химически простые вещества» и «Если вода (при
нормальном давлении) нагрета до 100°С, то она закипает».
Вопрос о том, каковы здесь знаковые формы, не требует,
очевидно, разъяснений. Конкретное содержание мысли в
первом случае состоит, как видно, в утверждении, что каж-
дый предмет, который мы характеризуем свойством метал-
личности, обладает свойством химической простоты, то есть
состоит из однородных атомов. Чтобы выявить логическую
1
Одно и то же суждение может быть выражено в разных языках и
даже в разных знаковых формах в пределах одного языка. Когда суждение
рассматривается в связи с какой-то конкретной формой его языкового вы-
ражения, оно называется «высказыванием». Термин же «суждение» для
него мы употребляем, когда отвлекаемся от того, какова именно его знако-
вая форма.
22
форму и логическое содержание этого суждения надо от-
влечься от того, каковы именно те конкретные предметы, о
которых в нем что-то утверждается, и каковы именно те
конкретные свойства или отношения, наличие которых у
этих предметов утверждается. Отвлекаясь от того, что речь
идет здесь о металлах, мы можем обозначить их просто пе-
ременной S, а вместо свойства «химически простое веще-
ство» ввести переменную Р. Тогда вместо данного конкрет-
ного суждения получаем его логическую форму:
Все 5 суть Р.
Это выражение обладает еще определенным содержани-
ем, оно в определенной степени осмысленно, а именно, в
нем утверждается, что всякий предмет, обладающий каким-
то свойством 5, имеет свойство Р. Это содержание, которое
представляет логическая форма высказывания, и называется
логическим содержанием высказывания.
Читатель теперь сам, очевидно, установит, что для того
чтобы выявить логическую форму второго из взятых нами
высказываний, надо отвлечься от конкретного предмета, а в
данном случае воды. Результатом отвлечения будет введение
некоторой переменной для его обозначения, например, а.
Вместе с тем отвлекаемся от того, о каких именно свойствах
этого предмета идет речь, заменяя опять их знаковые формы
переменными: «нагретость до 100°С» обозначим Pv а «заки-
пает» — Р2. В итоге получим:
Если а есть Pv то а есть РТ
Логическое содержание состоит здесь в указании на
связь между наличием у предмета одного свойства Рх и нали-
чием другого — Р2.
Тут же логическую форму имеет высказывание: «Если
сумма цифр числа 353 делится на 3, то само это число делит-
ся на 3».
Читатель, наверное, усмотрел уже, что при выявлении ло-
гических форм высказываний в приведенных случаях мы до-
пускали определенные огрубления: игнорировали, например,
различие между структурами таких свойств, как «нагреть до
100°С» и «закипает». В первом случае налицо некоторое от-
ношение между водой и температурой 100°С. Есть суще-
ственная разница между свойствами «делимость суммы
23
цифр числа на 3» и «делимость самого числа на 3», которую
мы также не принимали во внимание. Все дело в том, что ло-
гические формы мысли можно выявлять с той или иной сте-
пенью точности, с учетом или без учета тех или иных струк-
турных особенностей свойств, отношений, как и самих пред-
метов. Все зависит от того, с какой целью, в каких ситуаци-
ях, для решения каких задач нам необходимо выявить логи-
ческую форму той или иной мысли. Иногда мы можем вооб-
ще отвлекаться от структур высказываний, составляющих
другие — сложные — высказывания, и, например, в каче-
стве логической формы вышеприведенных высказываний о
делимости числа, о кипении воды получить выражение:
Если р, то q,
где р и q — переменные для высказываний (пропозицио-
нальные переменные).
Возьмем высказывание: «Если наш мир лучший из миров,
то все люди в нем должны быть счастливы». Рассматривая
свойства «лучший из миров» и «всякий человек — в нем —
должен быть счастлив» как простые, получим форму данного
высказывания, аналогичную предыдущей:
Если а есть Pv то а есть Р2
Если же учтем структуру второго свойства «Всякий чело-
век, если он живет в нашем мире, то он счастлив», будем
иметь: «если а есть Pv то все 5 суть Р2 (если SRa, то 5 есть О)»,
где R — отношение «живет». Читателю предлагается теперь
самому выявить логическую структуру также первого из ука-
занных свойств и соответственно форму всего высказывания
с учетом структуры этого свойства.
Не имея возможности вдаваться здесь во многие подробности
(см. гл. И, 6), заметим, однако, что в каждом высказывании мы
различаем дескриптивные термины и логические. Дескриптив-
ные — это термины, обозначающие предметы, свойства, отноше-
ния. К числу логических терминов относятся в наших примерах та-
кие знаковые выражения, как «все», «некоторые», «и», «если...,
то...» и др. Именно логические термины и определяют логические
содержания высказываний и именно наличие логических операций и
отношений, которые обозначаются логическими терминами, ха-
рактеризуют специфику воспроизведения действительности в
мышлении. Правда, в мышлении не все логические связи фиксиру-
ются явным образом посредством специальных логических терми-
нов1. Логические термины и являются, в частности, тем инстру-
ментарием, с помощью которого осуществляется упоминавшаяся
выше синтетическая деятельность мышления. Посредством их про-
исходит соотнесение свойств и отношений, зафиксированных в
языке первоначально в отрыве от предметов, с теми или иными оп-
ределенными предметами. Речь идет о той именно синтезирующей
деятельности мышления, которая осуществляется в формах выска-
зываний (суждений).
Несколько упрощенно логическую форму иногда определяют
как «способ связи в мысли частей мыслимого содержания». «Мыс-
лимое содержание» здесь, очевидно, конкретное содержание мыс-
ли в отличие от логического — связанное со значениями дескрип-
тивных терминов, а сам «способ связи» характеризуется логиче-
скими терминами.
Вообще, для того, чтобы точно выявить логическую форму не-
которой мысли, необходима точная и полная ее формулировка2,
содержащая все ее аспекты. Иначе — при выявлении логической
формы — может быть не учтена какая-то часть некоторого кон-
кретного содержания, а тем самым и потеряно нечто в логическом
содержании.
Неполнота формулировки может иметь место, когда, например,
не учитывается сложная структура тех или иных признаков, как
это было в одном из приведенных примеров. В высказывании
«Всякий человек имеет мать» «имеет» — не отношение; здесь под-
разумевается утверждение о существовании для каждого человека
некоторого другого человека такого, который находится в опреде-
ленном отношении к первому, а именно в том отношении, которое
обозначает слово «мать».
Здесь видны трудности выявления точного смысла и логиче-
ской формы высказываний в естественном языке. Когда утвержда-
ются какие-то отношения между предметами одного и того же
класса, возникает необходимость к общему обозначению предме-
тов этого класса (как в данном случае — «человек») добавлять либо
нумерацию (человек^ человек2...), либо вводить специальные сим-
1
Логическую форму имеют, конечно, и такие суждения, как «Луна —
холодное небесное тело», «Солнце — раскаленное тело», «Медь — металл»,
в формулировках которых нет специальных логических терминов, однако,
здесь подразумевается наличие логического отношения принадлежности
свойства предмету.
2
Точная и полная формулировка мысли нужным образом достигается
в специальных, формализованных, определенным образом стандартизиро-
ванных языках (см. гл. III), в чем и состоит их важное значение для логики.
волы переменных X, Y, ..., употребляя выражения «человек X», «че-
ловек У», как это и делается в формализованных языках.
В тех или иных случаях, в зависимости от решаемых задач, мы
можем, как уже было сказано, опускать какие-то стороны содер-
жания. Но «опускать» — не значит «вообще не замечать и не учи-
тывать».
Следует добавить также, что, выявляя логическую форму, при
замене терминов с конкретным содержанием — знаков предме-
тов, свойств, отношений — мы заменяем их переменными соот-
ветствующих типов, то есть знаками, под которыми подразумева-
ются объекты тех же типов; причем один и тот же термин, если
он встречается в выражении не один раз, заменяется одной и той
же переменной, а различные — различными. При этом употребля-
ются переменные особого вида, так называемые «переменные —
параметры», или, иначе говоря, «фиксированные переменные», в
отличие от так называемых «квантифицированных переменных»
(см. гл. III, § 10).
Вообще, логические формы высказываний, как и их логи-
ческие содержания, необходимы для выявления законов ло-
гики, лежащих в основе правильных форм рассуждений
(умозаключений).
Логические законы представляют собой связи, в частно-
сти, между высказываниями того или иного языка, завися-
щие только от их логических содержаний, а тем самым, от
их логических форм. Сами они выражаются обычно также в
формах некоторых высказываний того же языка, но с ис-
пользованием нужных переменных. Законами являются, на-
пример:
Если все S суть Р, то ни одно не-Р не есть S;
Если все S суть Р, то некоторые Р суть S;
Если неверно, что некоторые S есть Р, то ни одно S не есть Р.
Каждый из указанных законов определяет форму пра-
вильного умозаключения. Например, от истинности высказы-
вания вида «Все 5 суть Р» можно с гарантией заключить об
истинности высказываний вида «Ни одно не-Р не суть 5» и
вида «Некоторые Р суть 5». Так, если вместо 5 и Р использо-
вать, соответственно, «металл» и «электропроводящее веще-
ство», то ясно, что при истинности высказывания «Все метал-
лы суть электропроводящие вещества», обязательно истинны-
ми будут и высказывания «Ни одно неэлектропроводящее ве-
щество не есть металл» и «Некоторые электропроводящие ве-
щества есть металлы».
• Высказывания, выражающие законы логики, истинны при лю-
бых значениях содержащихся в них переменных (именно тех
переменных, которые мы вводим, выявляя логические формы
высказываний).