:: В Солнечной системе нет ни одной горячей планеты !!!
:: :: Так выглядят горячие гиганты с точки зрения разных ученых и художников :: Всё самое интересное, далее в теме :: Итак...............
RTPN - Ai
Область очень теплых планет простирается от 0.1 до 0.4 приведенных астрономических единиц (0.1 < R/Rэф < 0.4). Как уже говорилось, на нижней границе этой зоны (0.1 R/Rэф) эффективная температура планет достигает 840-880К, на верхней (0.4 R/Rэф) она в зависимости от альбедо планеты падает до 370-440К.
Это практически все, что мы знаем об очень теплых гигантах. Возможно, они окутаны белыми облаками из галогенидов щелочных металлов (в основном хлорида натрия), а может, затянуты дымкой из гидридов магния и кальция.
При температуре около 900К химическое равновесие углерода сдвигается в сторону преобладания метана, а не угарного газа, однако азот по-прежнему пребывает в виде молекулярного азота (а не в виде аммиака).
Весьма вероятно, что зрелые планеты этого типа (возрастом несколько миллиардов лет) замедлили свое вращение под действием приливных сил, однако часть из них может быть и не захвачена в резонанс 1:1
gif
На данный момент известен только один транзитный очень теплый нептун - это планета GJ 436 b (R/Rэф = 0.14). Его масса составляет 22.6 ± 1.9 масс Земли, радиус 4.2 ± 0.2 земных радиусов, средняя плотность равна 1.71 ± 0.31 г/куб.см, вторая космическая скорость близка к 26 км/сек.
В зависимости от альбедо (которое пока неизвестно) его эффективная температура может составлять 630-700К. Прямое измерение температуры планеты с помощью космического инфракрасного телескопа им.
Спитцера дало значение 712 ± 36К, что говорит о низком альбедо и/или дополнительном разогреве планеты приливными силами. Температура его экзосферы должна быть выше температуры экзосферы Земли (1500К), но ниже температуры экзосферы Озириса (5000К).
Если грубо оценить ее в 3000К, то средняя скорость атомов водорода составит 7.2 км/сек, что всего в 3.6 раза меньше второй космической скорости. Весьма вероятно, что GJ 436 b уже потерял значительную долю водорода, и в его атмосфере преобладает гелий. Скорее всего, атмосфера планеты затянута темным органическим смогом.
Возможно, очень теплый нептун выглядит примерно так
На данный момент вне Солнечной системы известна только одна очень теплая земля, Gliese 876 d. Ее минимальная масса 5.7 масс Земли, она вращается вокруг близкого красного карлика Gliese 876 на расстоянии 0.021 а.е. (чуть больше 3 млн.км) и делает один оборот за 1.938 суток.
Почти наверняка она захвачена в резонанс 1:1 и повернута к своей звезде только одной стороной. При R/Rэф = 0.13 ее эффективная температура составляет 650-770К в зависимости от альбедо.
Плотная атмосфера может состоять из азота, углекислого и угарного газов, водяного пара и сероводорода. Весьма вероятно, что из-за сильного парникового эффекта температура поверхности этой планеты очень высока, а поверхность покрыта обширными лавовыми морями. Так выглядит поверхность планеты Gliese 876 d
Горячая или очень теплая земля в отсутствии атмосферы и при ее наличии
В Солнечной системе в область очень теплых планет попадает Меркурий (большая полуось орбиты 0.387 а.е.). Точнее, он находится вблизи внешней границы этой области, в перигелии погружаясь в нее достаточно глубоко (до 0.308 а.е.), а в афелии уходя в зону теплых планет (0.467 а.е.)
gif
Зона теплых планет простирается от 0.4 до 0.8 приведенных астрономических единиц (0.4 < R/Rэф < 0.8). Эффективная температура планет в этой области падает от примерно 400К на нижней границе области (0.4 R/Rэф) до 262К на верхней границе (0.8 R/Rэф).
В случае солнечного химического состава атмосфера теплых гигантов будет чиста, прозрачна и практически лишена облаков на большую глубину.
Из-за рэлеевского рассеяния света в прозрачной атмосфере диск теплого гиганта будет казаться синим, голубым или серо-голубым, подобно голубому небу на Земле.
Ожидается, что альбедо таких планет будет достаточно высоким (0.4-0.5), особенно в коротковолновой части спектра. Так может выглядеть теплый гигант из-за рассеяния света в безоблачной прозрачной атмосфере
Теплый гигант
Теплый нептун будет уже достаточно прохладен, чтобы удержать водород в своей атмосфере. Весьма вероятно, что его атмосфера будет содержать несколько процентов метана, аммиака, водяного пара и сероводорода.
Скорее всего, диск теплого нептуна, как и диск теплого гиганта, будет небесно-голубым и почти лишенным деталей, но вблизи верхней границы температурной зоны (около 0.8 R/Rэф) в районе полюсов уже возможны легкие облака из водяного льда.
В сильно восстановительной (водородной) атмосфере планет-гигантов сера может присутствовать только в виде сероводорода, но в нейтральной (азотной) или окислительной (углекислой) атмосфере она может окислиться до сернистого газа или серной кислоты.
Сравнительно маломассивные планеты земного типа, попавшие в температурный диапазон теплых планет, скорее всего, будут иметь атмосферу из углекислого газа с примесью азота и водяного пара и будут окутаны белыми облаками из серной кислоты.
В зависимости от плотности и глубины атмосферы у таких планет может развиваться сильный (или не очень сильный) парниковый эффект, приводящий к высокой температуре на поверхности, значительно превышающей эффективную температуру. Типичный пример теплой земли - Венера
Температурная зона прохладных планет простирается от 0.8 до 1.3 приведенных астрономических единиц (0.8 < R/Rэф < 1.3) Это зона температурного оптимума, или обитаемая зона, по ее середине проходит эффективная земная орбита.
Планеты-гиганты, находящиеся в этой зоне, скорее всего, будут окутаны облаками из водяного льда. При обилии кислорода (а значит, и воды) в составе таких планет облачность может быть сплошной, делая планету ярко-белой.
При дефиците кислорода (например, на Юпитере по данным зонда Галилео количество кислорода составляет всего ~ 0.3 от количества кислорода на Солнце) облака из водяного льда будут формироваться только в зонах апвеллинга, при подъеме воздушных масс из глубины.
В местах опускания воздушных масс атмосфера будет слишком теплой и сухой для появления облаков, и рэлеевское рассеяние света в прозрачной атмосфере окрасит эти области в голубой цвет.
В результате такая планета примет характерный полосатый вид подобно полосатому виду Юпитера, только цвет полос будет белым и голубым.
Эффективная температура прохладных гигантов будет меняться примерно от 270 до 200К (для сравнения, эффективная температура Земли 253К).
Прохладные нептуны, состоящие в основном из льдов, будут иметь в своем составе достаточно воды для формирования сплошной облачности из водяного льда, их альбедо ожидается высоким (на уровне альбедо Венеры, т.е. 60-70%)
Прохладный гигант. На переднем плане - возможный крупный спутник со следами тектонических процессов
Прохладные земли - климатические аналоги Земли. Предполагается, что атмосфера прохладных земель (как и других планет земного типа) имеет вторичное происхождение из вулканических газов.
При базальтовом вулканизме в состав вулканических газов входят в первую очередь водяной пар, углекислый газ, сернистый газ и кислые дымы (хлороводород, фтороводород), иногда присутствуют водород, метан и угарный газ.
При невысокой температуре поверхности планеты водяной пар конденсируется, и в образующихся океанах растворяются углекислый газ, сернистый газ и галогеноводороды, образуя в результате карбонаты, сульфаты и хлориды (фториды и пр.)
Таким образом, в отличие от атмосфер теплых земель, состоящих в основном из углекислого газа и создающих мощный парниковый эффект, атмосферы прохладных земель оказываются сравнительно тонкими и в основном азотными, подобно атмосфере Земли.
Правда, пока неизвестно, насколько важную роль в этом процессе сыграла жизнь и существуют ли безжизненные прохладные земли с азотной (а не углекислой) атмосферой
gif
Температурная зона холодных планет простирается от 1.3 до 3 приведенных астрономических единиц (1.3 < R/Rэф < 3). Эффективная температура в этой области будет меняться от 210К вблизи нижней границы зоны (1.3 Rэф) до 135К вблизи ее верхней границы (3 Rэф).
Верхняя граница зоны холодных планет примерно совпадает со снеговой линией - расстоянием от звезды, далее которого возможно существование ледяных пылинок и водяного льда на поверхности безатмосферных небесных тел.
Ближе снеговой линии лед в отсутствии атмосферы достаточно быстро сублимирует (испаряется).
При солнечном химическом составе при 180-200К в атмосферах холодных гигантов будет конденсироваться гидросульфид аммония NH4SH - вещество, которым сложены бежевые облака Юпитера.
Чистый гидросульфид аммония бесцветен, но под действием ультрафиолетового излучения он частично разлагается с образованием элементарной серы и полисульфидов, окрашиваясь в желтовато-бежево-коричневые тона.
В зависимости от количества серы и азота в атмосфере холодного гиганта облака из гидросульфида аммония могут быть или сплошными, окутывая всю планету бежево-коричневым покрывалом, или возникать в зонах подъема воздушных масс над более низким слоем облаков из водяного льда - в этом случае планета будет выглядеть контрастно полосатой. Ожидается, что альбедо холодных гигантов будет достаточно высоким (40-60%).
Возможный вид холодного гиганта с точки зрения Алексея Корецкого. Внешние облака планеты состоят из гидросульфида аммония
Внешний вид и состав внешнего слоя облаков холодного нептуна будет сильно зависеть от деталей его химического состава. При обилии азота он будет окутан белыми облаками из замерзшего аммиака, при обилии серы - покрыт облаками из гидросульфида аммония.
При резком преобладании серы над азотом возможно образование облаков из жидких капелек сероводорода. Облака из водяного льда уходят в глубину и больше не видны из космоса.
В Солнечной системе в зону холодных планет попадает Марс и главный пояс астероидов
Температурная зона очень холодных планет простирается от 3 до 12 приведенных астрономических единиц (3 < R/Rэф < 12). Эффективная температура в этой области будет меняться примерно от 135К до 70К.
Очень холодные гиганты, скорее всего, будут окутаны облаками из замерзшего аммиака. В атмосфере Юпитера аммиак конденсируется при температуре 140-150К и давлении 0.75 атм.
На Сатурне основной слой аммиачных облаков расположен при температуре около 150К и давлении 1.4 атм., однако выше находится надоблачная дымка (из мелких кристаллов аммиака), плотная над экватором и редеющая к полюсам.
По всей видимости, все планеты-гиганты в интервале расстояний от 5 до 9 приведенных астрономических единиц будут окутаны светло-светло-бежевыми облаками из замерзшего аммиака. Вблизи нижней границы очень холодных гигантов (Rэф ~ 3-5) аммиак будет конденсироваться только вблизи тропопаузы, в восходящих воздушных потоках.
В нисходящих потоках воздух будет слишком теплым и сухим для образования аммиачных облаков, и там из космоса будут видны более низкие облака из гидросульфида аммония.
В результате планета-гигант будет выглядеть контрастно-полосатой подобно Юпитеру. При увеличении эффективного расстояния температура планет будет падать, и аммиачные облака станут сплошными (подобно аммиачным облакам Сатурна).
Вблизи верхней границы зоны очень холодных гигантов (Rэф ~ 12) аммиачные облака уходят в глубину, и диск планеты окрашивается голубым из-за рэлеевского рассеяния света в холодной прозрачной атмосфере.
Возможный вид очень холодного гиганта. Внешние облака планеты состоят из замерзшего аммиака
Очень холодные нептуны, скорее всего, также будут покрыты облаками из замерзшего аммиака. Альбедо очень холодных нептунов, скорее всего, будет высоким: 50-70%.В настоящее время известна только одна планета с массой, меньшей 7 масс Земли, и попадающая в интервал очень холодных планет - это спутник Сатурна Титан.
По аналогии с Титаном можно сказать, что очень холодные земли будут сложены примерно напополам из силикатов и водяного льда, обладать развитым криовулканизмом, иметь преимущественно азотную атмосферу и развитую "гидросферу", в которой роль воды будут играть жидкие углеводороды метан и этан.
Фотохимические процессы с участием метана и азота (при оттоке из атмосферы водорода) приведут к образованию плотного смога из толинов и, возможно, других углеводородных полимеров.
В Солнечной системе очень холодные гиганты - Юпитер и Сатурн.
Температурная зона ледяных планет простирается от 12 приведенных астрономических единиц (R/Rэф > 12). Эффективная температура в этой области меньше 70К.
При такой температуре конденсируются большинство газов, кроме водорода, гелия и неона. Впрочем, сравнительно высокое давление насыщенных паров азота ниже тройной точки азота (63К) позволит небольшим телам иметь разреженную азотную атмосферу и при более низкой температуре.
Начиная с 11-12 приведенных астрономических единиц и до R/Rэф ~ 30 атмосфера ледяных гигантов будет лишена облаков. Облака из замерзшего аммиака погрузятся достаточно глубоко внутрь атмосферы, туда, где температура воздуха будет близка к 140-150К.
Вместе с тем, из-за небольшого количества метана (доли процента) "метановая влажность" будет недостаточна для образования облаков из замерзшего метана. Из-за рэлеевского рассеяния света в чистой атмосфере диски таких планет будут серо-синими или темно-серо-голубыми.
Ледяные нептуны также будут иметь чистую прозрачную атмосферу и бирюзово-голубой или синий цвет, но, в отличие от ледяных гигантов, на них возможно образование белых облаков из замерзшего метана.
Основной слой облаков на этих планетах, в зависимости от химического состава, может состоять из аммиака или замерзшего сероводорода и располагаться на уровне давления в несколько атмосфер.
В Солнечной системе известны два ледяных нептуна - Уран и Нептун.
INFINITY (Вселенная Космос Земля)
:UFO Die Logik des Wahnsins Артур Ройсс
:: В Солнечной системе нет ни одной горячей планеты !!!
::
:: Так выглядят горячие гиганты с точки зрения разных ученых и художников :: Всё самое интересное, далее в теме :: Итак...............
Это практически все, что мы знаем об очень теплых гигантах. Возможно, они окутаны белыми облаками из галогенидов щелочных металлов (в основном хлорида натрия), а может, затянуты дымкой из гидридов магния и кальция.
При температуре около 900К химическое равновесие углерода сдвигается в сторону преобладания метана, а не угарного газа, однако азот по-прежнему пребывает в виде молекулярного азота (а не в виде аммиака).
Весьма вероятно, что зрелые планеты этого типа (возрастом несколько миллиардов лет) замедлили свое вращение под действием приливных сил, однако часть из них может быть и не захвачена в резонанс 1:1
В зависимости от альбедо (которое пока неизвестно) его эффективная температура может составлять 630-700К. Прямое измерение температуры планеты с помощью космического инфракрасного телескопа им.
Спитцера дало значение 712 ± 36К, что говорит о низком альбедо и/или дополнительном разогреве планеты приливными силами. Температура его экзосферы должна быть выше температуры экзосферы Земли (1500К), но ниже температуры экзосферы Озириса (5000К).
Если грубо оценить ее в 3000К, то средняя скорость атомов водорода составит 7.2 км/сек, что всего в 3.6 раза меньше второй космической скорости.
Весьма вероятно, что GJ 436 b уже потерял значительную долю водорода, и в его атмосфере преобладает гелий. Скорее всего, атмосфера планеты затянута темным органическим смогом.
Возможно, очень теплый нептун выглядит примерно так
Почти наверняка она захвачена в резонанс 1:1 и повернута к своей звезде только одной стороной. При R/Rэф = 0.13 ее эффективная температура составляет 650-770К в зависимости от альбедо.
Плотная атмосфера может состоять из азота, углекислого и угарного газов, водяного пара и сероводорода. Весьма вероятно, что из-за сильного парникового эффекта температура поверхности этой планеты очень высока, а поверхность покрыта обширными лавовыми морями.
Так выглядит поверхность планеты Gliese 876 d
В случае солнечного химического состава атмосфера теплых гигантов будет чиста, прозрачна и практически лишена облаков на большую глубину.
Из-за рэлеевского рассеяния света в прозрачной атмосфере диск теплого гиганта будет казаться синим, голубым или серо-голубым, подобно голубому небу на Земле.
Ожидается, что альбедо таких планет будет достаточно высоким (0.4-0.5), особенно в коротковолновой части спектра.
Так может выглядеть теплый гигант из-за рассеяния света в безоблачной прозрачной атмосфере
Скорее всего, диск теплого нептуна, как и диск теплого гиганта, будет небесно-голубым и почти лишенным деталей, но вблизи верхней границы температурной зоны (около 0.8 R/Rэф) в районе полюсов уже возможны легкие облака из водяного льда.
В сильно восстановительной (водородной) атмосфере планет-гигантов сера может присутствовать только в виде сероводорода, но в нейтральной (азотной) или окислительной (углекислой) атмосфере она может окислиться до сернистого газа или серной кислоты.
Сравнительно маломассивные планеты земного типа, попавшие в температурный диапазон теплых планет, скорее всего, будут иметь атмосферу из углекислого газа с примесью азота и водяного пара и будут окутаны белыми облаками из серной кислоты.
В зависимости от плотности и глубины атмосферы у таких планет может развиваться сильный (или не очень сильный) парниковый эффект, приводящий к высокой температуре на поверхности, значительно превышающей эффективную температуру. Типичный пример теплой земли - Венера
Планеты-гиганты, находящиеся в этой зоне, скорее всего, будут окутаны облаками из водяного льда. При обилии кислорода (а значит, и воды) в составе таких планет облачность может быть сплошной, делая планету ярко-белой.
При дефиците кислорода (например, на Юпитере по данным зонда Галилео количество кислорода составляет всего ~ 0.3 от количества кислорода на Солнце) облака из водяного льда будут формироваться только в зонах апвеллинга, при подъеме воздушных масс из глубины.
В местах опускания воздушных масс атмосфера будет слишком теплой и сухой для появления облаков, и рэлеевское рассеяние света в прозрачной атмосфере окрасит эти области в голубой цвет.
В результате такая планета примет характерный полосатый вид подобно полосатому виду Юпитера, только цвет полос будет белым и голубым.
Эффективная температура прохладных гигантов будет меняться примерно от 270 до 200К (для сравнения, эффективная температура Земли 253К).
Прохладные нептуны, состоящие в основном из льдов, будут иметь в своем составе достаточно воды для формирования сплошной облачности из водяного льда, их альбедо ожидается высоким (на уровне альбедо Венеры, т.е. 60-70%)
Прохладный гигант. На переднем плане - возможный крупный спутник со следами тектонических процессов
При базальтовом вулканизме в состав вулканических газов входят в первую очередь водяной пар, углекислый газ, сернистый газ и кислые дымы (хлороводород, фтороводород), иногда присутствуют водород, метан и угарный газ.
При невысокой температуре поверхности планеты водяной пар конденсируется, и в образующихся океанах растворяются углекислый газ, сернистый газ и галогеноводороды, образуя в результате карбонаты, сульфаты и хлориды (фториды и пр.)
Таким образом, в отличие от атмосфер теплых земель, состоящих в основном из углекислого газа и создающих мощный парниковый эффект, атмосферы прохладных земель оказываются сравнительно тонкими и в основном азотными, подобно атмосфере Земли.
Правда, пока неизвестно, насколько важную роль в этом процессе сыграла жизнь и существуют ли безжизненные прохладные земли с азотной (а не углекислой) атмосферой
Верхняя граница зоны холодных планет примерно совпадает со снеговой линией - расстоянием от звезды, далее которого возможно существование ледяных пылинок и водяного льда на поверхности безатмосферных небесных тел.
Ближе снеговой линии лед в отсутствии атмосферы достаточно быстро сублимирует (испаряется).
При солнечном химическом составе при 180-200К в атмосферах холодных гигантов будет конденсироваться гидросульфид аммония NH4SH - вещество, которым сложены бежевые облака Юпитера.
Чистый гидросульфид аммония бесцветен, но под действием ультрафиолетового излучения он частично разлагается с образованием элементарной серы и полисульфидов, окрашиваясь в желтовато-бежево-коричневые тона.
В зависимости от количества серы и азота в атмосфере холодного гиганта облака из гидросульфида аммония могут быть или сплошными, окутывая всю планету бежево-коричневым покрывалом, или возникать в зонах подъема воздушных масс над более низким слоем облаков из водяного льда - в этом случае планета будет выглядеть контрастно полосатой. Ожидается, что альбедо холодных гигантов будет достаточно высоким (40-60%).
Возможный вид холодного гиганта с точки зрения Алексея Корецкого. Внешние облака планеты состоят из гидросульфида аммония
При резком преобладании серы над азотом возможно образование облаков из жидких капелек сероводорода. Облака из водяного льда уходят в глубину и больше не видны из космоса.
В Солнечной системе в зону холодных планет попадает Марс и главный пояс астероидов
Очень холодные гиганты, скорее всего, будут окутаны облаками из замерзшего аммиака. В атмосфере Юпитера аммиак конденсируется при температуре 140-150К и давлении 0.75 атм.
На Сатурне основной слой аммиачных облаков расположен при температуре около 150К и давлении 1.4 атм., однако выше находится надоблачная дымка (из мелких кристаллов аммиака), плотная над экватором и редеющая к полюсам.
По всей видимости, все планеты-гиганты в интервале расстояний от 5 до 9 приведенных астрономических единиц будут окутаны светло-светло-бежевыми облаками из замерзшего аммиака. Вблизи нижней границы очень холодных гигантов (Rэф ~ 3-5) аммиак будет конденсироваться только вблизи тропопаузы, в восходящих воздушных потоках.
В нисходящих потоках воздух будет слишком теплым и сухим для образования аммиачных облаков, и там из космоса будут видны более низкие облака из гидросульфида аммония.
В результате планета-гигант будет выглядеть контрастно-полосатой подобно Юпитеру. При увеличении эффективного расстояния температура планет будет падать, и аммиачные облака станут сплошными (подобно аммиачным облакам Сатурна).
Вблизи верхней границы зоны очень холодных гигантов (Rэф ~ 12) аммиачные облака уходят в глубину, и диск планеты окрашивается голубым из-за рэлеевского рассеяния света в холодной прозрачной атмосфере.
Возможный вид очень холодного гиганта. Внешние облака планеты состоят из замерзшего аммиака
По аналогии с Титаном можно сказать, что очень холодные земли будут сложены примерно напополам из силикатов и водяного льда, обладать развитым криовулканизмом, иметь преимущественно азотную атмосферу и развитую "гидросферу", в которой роль воды будут играть жидкие углеводороды метан и этан.
Фотохимические процессы с участием метана и азота (при оттоке из атмосферы водорода) приведут к образованию плотного смога из толинов и, возможно, других углеводородных полимеров.
В Солнечной системе очень холодные гиганты - Юпитер и Сатурн.
При такой температуре конденсируются большинство газов, кроме водорода, гелия и неона. Впрочем, сравнительно высокое давление насыщенных паров азота ниже тройной точки азота (63К) позволит небольшим телам иметь разреженную азотную атмосферу и при более низкой температуре.
Начиная с 11-12 приведенных астрономических единиц и до R/Rэф ~ 30 атмосфера ледяных гигантов будет лишена облаков. Облака из замерзшего аммиака погрузятся достаточно глубоко внутрь атмосферы, туда, где температура воздуха будет близка к 140-150К.
Вместе с тем, из-за небольшого количества метана (доли процента) "метановая влажность" будет недостаточна для образования облаков из замерзшего метана. Из-за рэлеевского рассеяния света в чистой атмосфере диски таких планет будут серо-синими или темно-серо-голубыми.
Ледяные нептуны также будут иметь чистую прозрачную атмосферу и бирюзово-голубой или синий цвет, но, в отличие от ледяных гигантов, на них возможно образование белых облаков из замерзшего метана.
Основной слой облаков на этих планетах, в зависимости от химического состава, может состоять из аммиака или замерзшего сероводорода и располагаться на уровне давления в несколько атмосфер.
В Солнечной системе известны два ледяных нептуна - Уран и Нептун.