Памятник числу пи

Памятник числу пи в Сиэтле на ступенях перед зданием Музея искусств единственный памятник этому замечательному числу.
Число π =3,141 592 653 589 793 238 462 643 383 279 502 884 197 169 399 375 105 820 974 944 592 307 816 406 286 208 998 628 034 825 342 117 067 982 148 086 513 282 306 647 093 844 609 550 582 231 725 359 408 128 481 117 450 284 102 701 938 521 105 559 644 622 948 954 930 381 964 428 810 975 665 933 446 128 475 648 233 786 783 165 271 201 909 145 648 566 923 460 348 610 454 326 648 213 393 607 260 249 141 273 724 587 006 606 315 588 174 881 520 920 962 829 254 091 715 364 367 892 590 360 011 330 530 548 820 466 521 384 146 951 941 511 609 433 057 270 365 759 591 953 092 186 117 381 932 611 793 105 118 548 074 462 379 962 749 567 351 885 752 724 891 227 938 183 011 949 129 833 673 362…
То, что отношение длины окружности к диаметру одинаково для любой окружности, и то, что это отношение немногим более 3, было известно ещё древнеегипетским, вавилонским, древнеиндийским и древнегреческим геометрам. Самое раннее из известных приближений датируется 1900 годом до н. э.; это 25/8 (Вавилон) и 256/81 (Египет). Архимед, возможно, первым предложил математический способ вычисления πи. Для этого он вписывал в окружность и описывал около неё правильные многоугольники. Принимая диаметр окружности за единицу, Архимед рассматривал периметр вписанного многоугольника как нижнюю оценку длины окружности, а периметр описанного многоугольника как верхнюю оценку. В 1882 профессор Мюнхенского университета Карл Луиз Фердинанд Линдеман (1852–1939) используя результаты, полученные французским математиком Ш.Эрмитом, доказал, что пи – число трансцендентное, т.е. оно не является корнем никакого алгебраического уравнения anxn + an–1xn–1+ … + a1x + a0 = 0 с целыми коэффициентами. Это доказательство поставило точку в истории древнейшей математической задачи о квадратуре круга. Тысячелетия эта задача не поддавалась усилиям математиков, выражение «квадратура круга» стало синонимом неразрешимой проблемы. А все дело оказалось в трансцендентной природе числа π. В память об этом открытии в зале перед математической аудиторией Мюнхенского университета был установлен бюст Линдемана. На постаменте под его именем изображен круг, пересеченный квадратом равной площади, внутри которого начертана буква π.
В начале XX века индийский математик Сриниваса Рамануджан обнаружил множество новых формул для π, которые стали знаменитыми из-за своей элегантности и математической глубины.
Число π имеет важнейшее значение в современной науке. Это число появилось из-за евклидовости пространства – однородного и симметричного. Поэтому фронт взрывной волны имеет сферическую форму, а круги от брошенного камня на воде имеет круговую формы. А интенсивность света, рентгеновского излучения снижается пропорционально квадрату расстояния от источника излучения. Число π отражает изотропность свойств пустого пространства нашей Вселенной, их одинаковость по любому направлению. С изотропностью пространства связан закон сохранения вращательного момента.
Памятник числу пи в Сиэтле на ступенях перед зданием Музея искусств единственный памятник этому замечательному числу.

Памятник числу пи - 852683642250

Комментарии

Комментариев нет.