Материал для подготовки к ЕГЭ по математике на тему: "Функции"

Если для любых двух значений аргумента x1 и x2 из условия x2 > x1 следует f ( x2 ) > f ( x1 ), то функция f ( x ) называется возрастающей; если для любых x1 и x2 из условия x2 > x1 следует f ( x2 ) < f ( x1 ), то функция f ( x ) называется убывающей. Функция, которая только возрастает или только убывает, называется монотонной.
Функция называется ограниченной, если существует такое положительное число M, что | f ( x ) | M для всех значений x . Если такого числа не существует, то функция - неограниченная.
Функция y = f ( x ) называется непрерывной в точке x = a, если :
1) функция определена при x = a, т.e. f ( a ) существует;
2) существует конечный предел lim f ( x ) ;
x→a
3) f ( a ) = lim f ( x ) .
x→a
Если не выполняется хотя бы одно из этих условий, то функция называется разрывной в точке x = a.
Если функция непрерывна во всех точках своей области определения, то она называется непрерывной функцией.
Если для любого x из области определения функции имеет место: f ( - x ) = f ( x ), то функция называется чётной; если же имеет место: f ( - x ) = - f ( x ), то функция называется нечётной.
Функция f ( x ) - периодическая, если существует такое отличное от нуля число T , что для любого x из области определения функции имеет место: f ( x + T ) = f ( x ). Такое наименьшее число называется периодом функции. Все тригонометрические функции являются периодическими.
Значение аргумента, при котором функция равна 0, называется нулём ( корнем ) функции. Функция может иметь несколько нулей. Например, функция y = x ( x + 1 ) ( x-3 ) имеет три нуля: x = 0, x = -1, x = 3. Геометрически нуль функции – это абсцисса точки пересечения графика функции с осью Х .
.#ЕГЭ2015 #ЕГЭ #математика

Материал для подготовки к ЕГЭ по математике на тему: "Функции" - 770966083441

Комментарии

Комментариев нет.