КОНДИЦИОНЕРЫ КОНДИЦИОНЕРЫ. КАК ЭТО БЫЛО Мало кто знает, что слово кондиционер впервые было произнесено вслух еще в 1815 году. Именно тогда француз Жанн Шабаннес получил британский патент на метод «кондиционирования воздуха и регулирования температуры в жилищах и других зданиях». Однако, практического воплощения идеи пришлось ждать достаточно долго. Только в 1902 году американский инженер-изобретатель Уиллис Карриер собрал промышленную холодильную машину для типографии Бруклина в Нью-Йорке. Самое любопытное, что первый кондиционер предназначался не для создания приятной прохлады работникам, а для борьбы с влажностью, здорово ухудшавшей качество печати… Правда, уже через год аристократия Европы, посещая Кельн, считала своим долгом посетить местный театр. Причем, живой интерес публики вызывала не только (и не столько) игра труппы, а приятный холодок царивший в зрительном зале даже в самые знойные месяцы. А когда в 1924 году система кондиционирования была установлена в одном из универмагов Детройта, наплыв зевак был просто умопомрачительным. Если бы хозяин заведения догадался брать плату за вход, то, наверное, в короткий срок обогнал бы и Форда, и Рокфеллера. Впрочем, заведение внакладе не осталось — в считанные дни его оборот вырос более чем в три раза! Эти первые аппараты и стали предками современных систем центрального кондиционирования воздуха. Уже в те годы существовали водоохлаждающие машины — чиллеры, внутренние блоки — фанкойлы и нечто напоминающее современные центральные кондиционеры. Со временем появлялись более совершенные компрессоры, в качестве хладагента стал использоваться фреон, а фанкойлы стали похожими на внутренние блоки сплит-систем. Однако принципиальная схема работы традиционных центральных систем кондиционирования осталась неизменной и по сей день. «Ископаемым» предком всех современных сплит-систем и оконников может считаться первый комнатный кондиционер, выпущенный компанией General Electric еще в 1929 году. Поскольку в качестве хладагента в этом устройстве использовался аммиак, пары которого небезопасны для здоровья человека, компрессор и конденсатор кондиционера были вынесены на улицу. То есть, по своей сути, это устройство было самой настоящей сплит-системой! Однако, начиная с 1931 года, когда был изобретен безопасный для человеческого организма хладагент — фреон, конструкторы сочли за благо собрать все узлы и агрегаты кондиционера в одном корпусе. Так появились первые оконные кондиционеры, далекие потомки которых успешно работают и в наши дни. Более того, в США, Латинской Америке, на Ближнем Востоке и в Индии «оконники» до сих пор являются наиболее популярным типом кондиционеров. Причины их успеха очевидны: они примерно вдвое дешевле аналогичных по мощности сплит-систем, а их монтаж не требует наличия специальных навыков и дорогостоящего инструмента. Последнее особенно важно вдали от очагов цивилизации, где легче отловить снежного человека, нежели найти гражданина знакомого с труборезом и заправочной станцией с блоком манометров. Долгое время лидерство в области новейших разработок по вентиляции и кондиционированию воздуха принадлежало американским компаниям, однако, в конце 50-ых, начале 60-ых годов инициатива прочно перешла к японцам. В дальнейшем именно они определили лицо современной индустрии климата. В 1958 году Японская компания Daikin разработала первый тепловой насос, тем самым, научив кондиционеры работать на тепло. А еще через три года произошло событие в значительной мере предопределившее дальнейшее развитие бытовых и полупромыщленных систем кондиционирования воздуха. Это — начало массового выпуска сплит-систем. Начиная с 1961 года, когда японская компания Toshiba впервые запустила в серийное производство кондиционер, разделенный на два блока, популярность этого типа климатического оборудования постоянно росла. Благодаря тому, что наиболее шумная часть кондиционера — компрессор теперь вынесена на улицу, в помещениях оборудованных сплит-системами намного тише, чем в комнатах, где работаю оконники. Интенсивность звука уменьшена на порядок! Второй огромный плюс — это возможность разместить внутренний блок сплит-системы в любом удобном месте. Сегодня выпускается немало различных типов внутренних устройств: настенные, подпотолочные, напольные и встраиваемые в подвесной потолок — кассетные и канальные. Это важно не только с точки зрения дизайна — различные типы внутренних блоков позволяют создавать наиболее оптимальное распределение охлажденного воздуха в помещениях определенной формы и назначения. В 1969 году компания Daikin выпустила кондиционер, в котором с одним внешним блоком работало сразу несколько внутренних. Так появились мультисплит-системы. Сегодня они могут включать в себя от двух до четырех внутренних блоков, различных типов. Существенным нововведением стало появление кондиционера инверторного типа. В 1981 году компания Toshiba предложила первую сплит-систему, способную плавно регулировать свою мощность, а уже в 1998 году инверторы заняли 95% японского рынка. Ну и, наконец, последний из наиболее популярных в мире типов кондиционеров — VRV — системы были предложены компанией Daikin в 1982 году. Центральные интеллектуальные системы типа VRV состоят из наружных и внутренних блоков, которые могут быть удалены друг от друга на 100 метров, причем 50 из них по вертикали. К тому же, установка VRV-систем достаточно проста и не занимает много времени. Монтаж можно вести даже после проведения отделочных работ, а при острой необходимости — не прерывая работу офиса. Возможен и поэтапный ввод мощностей, с отдельных этажей или помещений. А вот традиционные центральные системы кондиционирования надо закладывать в проект еще на стадии строительства. КОМПРЕССИОННЫЙ ЦИКЛ ОХЛАЖДЕНИЯ ХОЛОДИЛЬНОЙ МАШИНЫ. (Теория) Компрессионный цикл охлаждения состоит из четырех основных элементов: Компрессора Испарителя Конденсатора Регулятора потока Эти основные элементы соединены трубопроводами в замкнутую систему, по которой циркулирует хладагент (обычно это фреон). Компрессор производит циркуляцию хладагента и поддерживает высокое давление (20-23 атм.) в конденсаторе. Основные элементы цикла охлаждения - На выходе из испарителя хладагент - это пар при низкой температуре и низком давлении. - Затем компрессор всасывает хладагент, давление повышается до примерно 20 атм., а температура достигает 70 – 90оС. - После этого горячий пар хладагента попадает в конденсатор, где он охлаждается и конденсируется. Для охлаждения используется вода или воздух. На выходе из конденсатора хладагент представляет собой жидкость под высоким давлением. Внутри конденсатора пар должен полностью перейти в жидкое состояние. Для этого температура жидкости, выходящей из конденсатора, на несколько градусов (обычно 4-6°С) ниже температуры конденсации при данном давлении. - Затем хладагент (имеющий в этот момент жидкое агрегатное состояние при высоких давлении и температуре) поступает в регулятор потока. Здесь давление резко падает, и происходит частичное испарение. - На вход испарителя попадает смесь пара и жидкости. В испарителе жидкость должна полностью перейти в парообразное состояние. Поэтому температура пара на выходе из испарителя немного выше температуры кипения при данном давлении (обычно на 5-8оС). Это необходимо, чтобы в компрессор не попали даже мелкие капли жидкого хладагента, иначе компрессор может быть поврежден. - Образовавшийся в испарителе перегретый пар выходит из него, и цикл возобновляется сначала. Итак, ограниченное количество хладагента постоянно циркулирует в холодильной машине, меняя агрегатное состояние при периодически изменяющихся температуре и давлении. В каждом цикле имеется два определенных уровня давления. На стороне высокого давления происходит конденсация хладагента и находится конденсатор. На стороне низкого давления находится испаритель и жидкий хладагент превращается в пар. Граница между областями высокого и низкого давления проходит в двух точках - на выходе из компрессора (нагнетательный клапан) и на выходе из регулятора потока. Энтальпия хладагента (необязательно рассказывать клиенту) Описанный выше цикл охлаждения удобно изображать графически. На диаграмме показано соотношение давления и теплосодержания (энтальпии) хладагента. Энтальпия - это функция состояния, приращение которой при процессе с постоянным давлением равно теплоте, полученной системой. На диаграмме показана кривая насыщения хладагента. - Левая ветвь кривой соответствует насыщенной жидкости - Правая часть соответствует насыщенному пару. - В критической точке ветви кривой соединяются, и вещество может находиться и в жидком, и в газообразном состоянии. - Внутри кривой - зона, соответствующая смеси пара и жидкости. - Слева от кривой (в области меньшей энтальпии) - переохлажденная жидкость. - Справа от кривой (в области большей энтальпии) - перегретый пар. Теоретический цикл охлаждения несколько отличается от реального. В действительности происходят потери давления на разных этапах перекачки хладагента, снижающие эффективность охлаждения. Это не учитывается в идеальном цикле Теоретический цикл охлаждения 1. В компрессоре Холодный насыщенный пар хладагента поступает в компрессор холодильной машины (точка С1). В процессе сжатия его давление и температура повышаются (точка D). Энтальпия тоже повышается на величину, равную проекции линии С1-D. На схеме это отрезок НС1-НD. 2. Конденсация В конце цикла сжатия хладагента горячий пар попадает в конденсатор. Здесь при постоянных температуре и давлении происходит конденсация, и горячий пар превращается в горячую жидкость. Хотя температура практически постоянна, энтальпия уменьшается при фазовом переходе, а выделившееся тепло отводится от конденсатора. Этот процесс отображается на диаграмме в виде отрезка, параллельного горизонтальной оси (давление постоянно). Процесс в конденсаторе холодильной машины происходит в три этапа: снятие перегрева (D-Е), конденсация (Е-А) и переохлаждение жидкости (А-А1). Участок диаграммы D-А1 соответствует изменению энтальпии хладагента в конденсаторе и показывает, какое количество тепла выделяется в ходе данного процесса. - Снятие перегрева. В этом процессе температура пара снижается до температуры насыщения. Излишнее тепло отводится, но изменения агрегатного состояния не происходит. На этом этапе снимается около 10 - 20% тепла. - Конденсация На этом этапе происходит изменение агрегатного состояния хладагента. Температура при этом остается постоянной. На этом этапе снимается около 60 - 80% тепла. - Переохлаждение жидкости В этом процессе жидкий хладагент охлаждается, при этом получается переохлажденная жидкость. Агрегатное состояние не изменяется. Переохлаждение жидкости на этом этапе позволяет повысить производительность холодильной машины. При постоянном уровне энергопотребления понижение температуры на 1 градус повышает производительность холодильной машины на 1%. 3. Регулятор потока Переохлажденная жидкость с параметрами точки А2 поступает на регулятор холодильной машины. Он представляет собой капиллярную трубку или терморегулирующий расширительный клапан. В регуляторе происходит резкое снижение давления. Непосредственно за регулятором начинается кипение хладагента. Параметры получившейся смеси пара и жидкости соответствуют точке В. 4. В испарителе Смесь пара и жидкости (точка В) попадает в испаритель холодильной машины, где поглощает тепло от окружающей среды и полностью переходит в пар (точка С1). Этот процесс происходит при постоянной температуре, но энтальпия при этом увеличивается. На выходе испарителя парообразный хладагент немного перегревается (отрезок С1-С2), чтобы капли жидкости испарились полностью. Для этого приходится увеличивать площадь теплообменной поверхности испарителя (на 4-6% на каждый градус перегрева). Обычно перегрев составляет 5-8 градусов, и увеличение площади теплообмена достигает 20%. В испарителе холодильной машины энтальпия хладагента изменяется на величину НВ-НС2, равную проекции кривой испарения на горизонтальную ось. Реальный цикл охлаждения Реальный цикл охлаждения имеет некоторые отличия от идеального. Это происходит за счет потерь давления, возникающих на линии всасывания и нагнетания холодильной машины, а также в клапанах компрессора. Поэтому отображение реального цикла на диаграмме связи давления и энтальпии несколько иное. Из-за потерь давления на входе в компрессор всасывание должно проходить при давлении, которое ниже давления испарения (отрезок C1-L). Кроме того, из-за потерь давления на выходе компрессору приходится сжимать пар хладагента до давления, которое выше давления конденсации (M-D1). Таким образом, работа сжатия увеличивается. Такая компенсация потерь давления в реальной холодильной машине снижает эффективность цикла. Кроме потерь давления в трубопроводе, есть и другие отклонения от идеального цикла. Во-первых, реальное сжатие хладагента в компрессоре не может быть строго адиабатическим (без подвода и отвода тепла). Поэтому работа сжатия оказывается выше теоретически рассчитанной. Во-вторых, в компрессоре холодильной машины имеются механические потери энергии, что приводит к увеличению необходимой мощности электродвигателя. Эффективность цикла охлаждения холодильной машины Отображение на диаграмме: C1-L - потеря давления при всасывании M-D1 - потеря давления при выходе HD-HC1 - теоретическое изменение энтальпии (теплосодержания) при сжатии HD1-HC1 - реальное изменение энтальпии (теплосодержания) при сжатии C1D - теоретическое сжатие LM - реальное сжатие Для выбора лучшего из циклов охлаждения необходимо оценивать их эффективность. Обычно показателем эффективности цикла холодильной машины служит КПД или коэффициент термической (термодинамической) эффективности. Коэффициент термической эффективности - это: - отношение изменения энтальпии хладагента в испарителе (НС-НВ) к изменению энтальпии в процессе сжатия (HD-HC). - или: соотношение мощности охлаждения и электрической мощности, которую потребляет компрессор холодильной машины. Например, если коэффициент термической эффективности какой-либо холодильной машины равен 2, то на каждый кВт потребляемой электроэнергии эта машина производит 2 кВт холода. ПРИНЦИП РАБОТЫ КОНДИЦИОНЕРА (Кратко)(предназначено для клиента) Итак, в основе работы кондиционера лежит перемещение тепла сжиженным газом, который называют хладагентом, в процессе перехода его из жидкости в пар и обратно. Т.о. процесс работы кондиционера практически ничем не отличается от процесса работы обычного холодильника. Температура кипения хладагента намного ниже температуры кипения воды. Например, температура кипения наиболее часто используемого хладагента - фреона R-22 составляет 5-10°С, в то время как вода кипит при температуре 100°С. Рассмотрим цикл работы кондиционера в режиме охлаждения. Благодаря работе компрессора, размещенного в наружном блоке, во внутреннем блоке создается пониженное давление. Температура хладагента в этот момент равна 5-10°С, поэтому он начинает кипеть и переходит в пар. Необходимая для этого энергия поступает от теплого воздуха помещения, отдающего часть своего тепла хладагенту. Охлажденный таким образом воздух возвращается вентилятором внутреннего блока обратно в помещение. В то же время парообразный хладагент, проходя через компрессор наружного блока, сжимается под воздействием высокого давления и температура его увеличивается до 50-60°С. Далее горячий пар охлаждается в наружном блоке и снова превращается в жидкость, отдавая тепло окружающему воздуху при помощи вентилятора наружного блока. И даже если температура окружающей среды достигает 40-45°, она все же ниже температуры хладагента. После конденсатора жидкий хладагент пропускается через капиллярную трубку. Давление при этом резко падает и температура хладагента вновь опускается до 5-10°С, в результате чего жидкость снова начинает кипеть в испарителе, поглощая тепло из охлаждаемого помещения. Таким образом, при работе кондиционера происходит перенос тепла из среды, в которой находится испаритель (внутреннее помещение) в ту среду, где находится конденсатор (улица). КОНСТРУКЦИЯ КОНДИЦИОНЕРА 1.Компрессоры: принцип работы и типы Один из главных элементов любой холодильной машины - это компрессор. Компрессор всасывает пар хладагента, имеющий низкие температуру и давление, затем сжимает его, повышая температуру (до 70 - 90°С) и давление (до 15 - 25 атм.), а затем направляет парообразный хладагент к конденсатору. Основные характеристики компрессора - степень компрессии (сжатия) и объем хладагента, который он может нагнетать. Степень сжатия - это отношение максимального выходного давления паров хладагента к максимальному входному. В холодильных машинах используют компрессоры двух типов: - поршневые - с возвратно-поступательным движением поршней в цилиндрах; - ротационные, винтовые и спиральные- с вращательным движением рабочих частей. Поршневые компрессоры Поршневые компрессоры используются чаще всего в машинах большой мощности. Принцип их работы показана на схеме. При движении поршня (3) вверх по цилиндру компрессора (4) хладагент сжимается. Поршень перемещается электродвигателем через коленчатый вал (6) и шатун (5). Под действием давления пара открываются и закрываются всасывающие и выпускные клапаны компрессора холодильной машины. На схеме 1 показана фаза всасывания хладагента в компрессор. Поршень начинает опускаться вниз от верхней точки, при этом в камере компрессора создается разрежение и открывается впускной клапан (12). Парообразный хладагент низкой температуры и низкого давления попадает в рабочее пространство компрессора. На схеме 2 показана фаза сжатия пара и его выхода из компрессора. Поршень поднимается вверх и сжимает пар. При этом открывается выпускной клапан компрессора (1) и пар под высоким давлением выходит из компрессора. Основные модификации поршневых компрессоров(отличаются конструкцией, типом двигателя и назначением): - герметичные компрессоры; - полугерметичные компрессоры; - открытые компрессоры. Герметичные компрессоры: Используются в холодильных машинах небольшой мощности (1.5 - 35 кВт). Электродвигатель расположен внутри герметичного корпуса компрессора. Охлаждение электродвигателя производится самими всасываемым хладагентом. Полугерметичные компрессоры: Используются в холодильных машинах средней мощности (30 - 300 кВт). В полугерметичных компрессорах электродвигатель и компрессор соединены напрямую и размещены в одном разборном контейнере. Преимущество этого типа компрессоров в том, что при повреждениях можно вынуть двигатель, чтобы ремонтировать клапаны, поршень и др. части компрессора. Охлаждение электродвигателя производится самими всасываемым хладагентом. Открытые компрессоры: Имеют внешний электродвигатель, выведенный за пределы корпуса, и соединенный с компрессором напрямую или через трансмиссию. Мощность многих холодильных установок может плавно регулироваться с помощью инверторов - специальных устройств, изменяющих скорость вращения компрессора. В полугерметичных компрессорах возможен и другой способ регулировки мощности - перепуском пара с выхода на вход либо закрытием част всасывающих клапанов. Основные недостатки поршневых компрессоров: - пульсации давления паров хладагента на выходе, приводящие к высокому уровню шума. - большие нагрузки при пуске, требующие большого запаса мощности и приводящие к износу компрессора. Ротационные компрессоры вращения (наиболее часто применяемые) Принцип работы ротационных компрессоров вращения основан на всасывании и сжатии газа при вращении пластин. Их преимущество перед поршневыми компрессорами состоит в низких пульсациях давления и уменьшении тока при запуске. Существует две модификации ротационных компрессоров: - со стационарными пластинами; - с вращающимися пластинами. Компрессор со стационарными пластинами В компрессоре со стационарными пластинами хладагент сжимается при помощи эксцентрика, установленного на ротор двигателя. При вращении ротора эксцентрик катится по внутренней поверхности цилиндра компрессора, и находящийся перед ним пар хладагента сжимается, а затем выталкивается через выпускной клапан компрессора. Пластины разделяют области высокого и низкого давления паров хладагента внутри цилиндра компрессора. 1.Пар заполняет имеющееся пространство 2.Начинается сжатие пара внутри компрессора и всасывание новой порции хладагента 3.Сжатие и всасывание продолжается 4.Сжатие завершено, пар окончательно заполнил пространство внутри цилиндра компрессора. Компрессор с вращающимися пластинами В компрессоре с вращающимися пластинами хладагент сжимается при помощи пластин, закрепленных на вращающемся роторе. Ось ротора смещена относительно оси цилиндра компрессора. Края пластин плотно прилегают к поверхности цилиндра, разделяя области высокого и низкого давления. На схеме показан цикл всасывания и сжатия пара. Пар заполняет имеющееся пространство Начинается сжатие пара внутри компрессора и всасывание новой порции хладагента Сжатие и всасывание завершается. Начинается новый цикл всасывания и сжатия. Компрессора, на одном валу которых расположено два ротора, называют двуроторными. Спиральные компрессоры SCROLL Спиральные компрессоры применяются в холодильных машинах малой и средней мощности. Такой компрессор состоит из двух стальных спиралей. Они вставлены одна в другую и расширяются от центра к краю цилиндра компрессора. Внутренняя спираль неподвижно закреплена, а внешняя вращается вокруг нее. Спирали имеют особый профиль (эвольвента), позволяющий перекатываться без проскальзывания. Подвижная спираль компрессора установлена на эксцентрике и перекатывается по внутренней поверхности другой спирали. При этом точка касания спиралей постепенно перемещается от края к центру. Пары хладагента, находящиеся перед линией касания, сжимаются, и выталкиваются в центральное отверстие в крышке компрессора. Точки касания расположены на каждом витке внутренней спирали, поэтому пары сжимаются более плавно, меньшими порциями, чем в других типах компрессоров. В результате нагрузка на электродвигатель компрессора снижается, особенно в момент пуска компрессора. Пары хладагента поступают через входное отверстие в цилиндрической части корпуса, охлаждают двигатель, затем сжимаются между спиралей и выходят через выпускное отверстие в верхней части корпуса компрессора. Недостатки спиральных компрессоров: - Сложность изготовления и, как следствие, высокая цена; - необходимо очень точное прилегание спиралей и герметичность по их торцам. Винтовые компрессоры (применяются в мощных машинах (для информации)) Винтовые компрессоры применяются в холодильных машинах большой мощности (150 - 3500 кВт). Существуют две модификации этого типа: - с одинарным винтом - с двойным винтом Винтовой компрессор с одинарным винтом: Модели с одинарным винтом имеют одну или две шестерни-сателлита, подсоединенные к ротору с боков. Сжатие паров хладагента происходит с помощью вращающихся в разные стороны роторов. Их вращение обеспечивает центральный ротор в виде винта. Пары хладагента поступают через входное отверстие компрессора, охлаждают двигатель, затем попадают во внешний сектор вращающихся шестеренок роторов, сжимаются и выходят через скользящий клапан в выпускное отверстие. Винты компрессора должны прилегать герметично, поэтому используется смазывающее масло. Впоследствии масло отделяется от хладагента в специальном сепараторе компрессора. Винтовой компрессор с двойным винтом: Модели с двойным винтом отличаются использованием двух роторов - основного и приводного. Винтовые компрессоры не имеют впускных и выпускных клапанов. Всасывание хладагента постоянно происходит с одной стороны компрессора, а его выпускание - с другой стороны. При таком способе сжатия паров уровень шума гораздо ниже, чем у поршневых компрессоров. Винтовые компрессоры позволяют плавно регулировать мощность холодильной машины с помощью изменения частоты оборотов двигателя. 2.Теплообменник Кондиционер содержит в себе внешний и внутренний теплообменники. Их функция - осуществлять теплообмен между хладагентом и воздухом окружающей среды. Во время охлаждения внутренний теплообменник называется испарителем, а внешний конденсатором. Во время нагрева - наоборот. Испаритель - поглощает тепло из помещения и понижает его температуру. Конденсатор - заставляет хладагент выделять тепло в окружающую среду и конденсирует хладагент в жидкость. Теплообменник состоит из теплообменных пластин и медных трубок. Пластины на медных трубках усиливают эффект теплообмена. Движимый вентилятором воздух проходит через поверхность теплообменника, который заставляет хладагент выделять тепло в окружающую среду. Основные неполадки во время работы теплообменника связаны с тем, что пыль забивает теплообменные каналы, это серьезно влияет на работу теплообменника. Здесь важно регулярно прочищать теплообменник вручную или, используя пылесос или сжатый воздух. 3.Терморегулирующий вентиль Для того чтобы жидкий хладагент мог испаряться, необходимо снизить его давление. Для этого на выходном отверстии конденсатора устанавливается препятствие, ограничивающее объем проходящего через него фреона. Как правило для этого используется длинная тонкая трубка, называемая капиллярной трубкой. После прохождения жидкого хладагента через капиллярную трубку его давление падает и он попадает в испаритель. 4.Четырех ходовой клапан Четырех ходовой реверсивный клапан предназначен для изменения направления движения хладагента. Во время работы в режиме "охлаждение" газ с высокой температурой и давлением поступает во внешний теплообменник через клапан. Во время работы в режиме "нагрев" клапан направляет газ с высокой температурой и давлением во внутренний теплообменник. Состоит из основного и распределительного клапанов. ПРИНЦИП РАБОТЫ КОНДИЦИОНЕРА НА ТЕПЛО Летом поток воздуха из внешнего блока кондиционера теплый, таким образом, логично предположить, что, меняя внутренний и внешний блоки местами, кондиционер можно использовать на обогрев зимой. Однако это нецелесообразно. Вместо того чтобы менять внутренний и внешний блоки местами используют деталь, называемую четырехходовый реверсивный клапан, для изменения направления движения потока хладагента. Данный метод, названный обогрев в режиме теплового насоса, основан на принципе забора теплоты из воздуха вне помещения и ее переноса в воздух, находящийся внутри помещения. Если температура на улице всего 7оС, то температура, при которой происходит испарение хладагента во внешнем теплообменнике, все равно ниже (от 0 до 3оС). Такой градиент температур (4…7оС) позволяет обирать теплоту из воздуха снаружи и передавать ее внутрь помещения. Однако чем ниже опускается температура на улице, тем меньше становится градиент температур и тем труднее отобрать теплоту из воздуха. Другими словами, мощность обогрева падает по мере понижения температуры на улице. Когда температура на улице падает до 5оС, температура испарения внешнего теплообменника падает ниже 0оС. В результате содержащаяся в воздухе влага осаждается на теплообменник в виде инея. Если этот иней не удалять, то его будет накапливаться все больше и больше, в результате чего будет остановлен поток воздуха через теплообменник и, следовательно, перестанет осуществляться отбор теплоты из уличного воздуха. Чтобы этого не произошло, необходимо своевременно счищать иней с теплообменника. Для этого в процессе обогрева рабочий цикл переключается с обогрева на охлаждение и, теплота, отдаваемая газообразным хладагентом, способствует устранению инея. Данный процесс во многих каталогах называют «разморозка обратным циклом».
Комфорт ТехСити
Курс лекций про кондиционеры
КОНДИЦИОНЕРЫ
КОНДИЦИОНЕРЫ. КАК ЭТО БЫЛО
Мало кто знает, что слово кондиционер впервые было произнесено вслух еще в 1815 году. Именно тогда француз Жанн Шабаннес получил британский патент на метод «кондиционирования воздуха и регулирования температуры в жилищах и других зданиях». Однако, практического воплощения идеи пришлось ждать достаточно долго. Только в 1902 году американский инженер-изобретатель Уиллис Карриер собрал промышленную холодильную машину для типографии Бруклина в Нью-Йорке. Самое любопытное, что первый кондиционер предназначался не для создания приятной прохлады работникам, а для борьбы с влажностью, здорово ухудшавшей качество печати…
Правда, уже через год аристократия Европы, посещая Кельн, считала своим долгом посетить местный театр. Причем, живой интерес публики вызывала не только (и не столько) игра труппы, а приятный холодок царивший в зрительном зале даже в самые знойные месяцы. А когда в 1924 году система кондиционирования была установлена в одном из универмагов Детройта, наплыв зевак был просто умопомрачительным. Если бы хозяин заведения догадался брать плату за вход, то, наверное, в короткий срок обогнал бы и Форда, и Рокфеллера. Впрочем, заведение внакладе не осталось — в считанные дни его оборот вырос более чем в три раза! Эти первые аппараты и стали предками современных систем центрального кондиционирования воздуха. Уже в те годы существовали водоохлаждающие машины — чиллеры, внутренние блоки — фанкойлы и нечто напоминающее современные центральные кондиционеры.
Со временем появлялись более совершенные компрессоры, в качестве хладагента стал использоваться фреон, а фанкойлы стали похожими на внутренние блоки сплит-систем. Однако принципиальная схема работы традиционных центральных систем кондиционирования осталась неизменной и по сей день.
«Ископаемым» предком всех современных сплит-систем и оконников может считаться первый комнатный кондиционер, выпущенный компанией General Electric еще в 1929 году. Поскольку в качестве хладагента в этом устройстве использовался аммиак, пары которого небезопасны для здоровья человека, компрессор и конденсатор кондиционера были вынесены на улицу. То есть, по своей сути, это устройство было самой настоящей сплит-системой! Однако, начиная с 1931 года, когда был изобретен безопасный для человеческого организма хладагент — фреон, конструкторы сочли за благо собрать все узлы и агрегаты кондиционера в одном корпусе. Так появились первые оконные кондиционеры, далекие потомки которых успешно работают и в наши дни. Более того, в США, Латинской Америке, на Ближнем Востоке и в Индии «оконники» до сих пор являются наиболее популярным типом кондиционеров. Причины их успеха очевидны: они примерно вдвое дешевле аналогичных по мощности сплит-систем, а их монтаж не требует наличия специальных навыков и дорогостоящего инструмента. Последнее особенно важно вдали от очагов цивилизации, где легче отловить снежного человека, нежели найти гражданина знакомого с труборезом и заправочной станцией с блоком манометров.
Долгое время лидерство в области новейших разработок по вентиляции и кондиционированию воздуха принадлежало американским компаниям, однако, в конце 50-ых, начале 60-ых годов инициатива прочно перешла к японцам. В дальнейшем именно они определили лицо современной индустрии климата.
В 1958 году Японская компания Daikin разработала первый тепловой насос, тем самым, научив кондиционеры работать на тепло. А еще через три года произошло событие в значительной мере предопределившее дальнейшее развитие бытовых и полупромыщленных систем кондиционирования воздуха. Это — начало массового выпуска сплит-систем. Начиная с 1961 года, когда японская компания Toshiba впервые запустила в серийное производство кондиционер, разделенный на два блока, популярность этого типа климатического оборудования постоянно росла. Благодаря тому, что наиболее шумная часть кондиционера — компрессор теперь вынесена на улицу, в помещениях оборудованных сплит-системами намного тише, чем в комнатах, где работаю оконники. Интенсивность звука уменьшена на порядок! Второй огромный плюс — это возможность разместить внутренний блок сплит-системы в любом удобном месте.
Сегодня выпускается немало различных типов внутренних устройств: настенные, подпотолочные, напольные и встраиваемые в подвесной потолок — кассетные и канальные. Это важно не только с точки зрения дизайна — различные типы внутренних блоков позволяют создавать наиболее оптимальное распределение охлажденного воздуха в помещениях определенной формы и назначения.
В 1969 году компания Daikin выпустила кондиционер, в котором с одним внешним блоком работало сразу несколько внутренних. Так появились мультисплит-системы. Сегодня они могут включать в себя от двух до четырех внутренних блоков, различных типов. Существенным нововведением стало появление кондиционера инверторного типа. В 1981 году компания Toshiba предложила первую сплит-систему, способную плавно регулировать свою мощность, а уже в 1998 году инверторы заняли 95% японского рынка.
Ну и, наконец, последний из наиболее популярных в мире типов кондиционеров — VRV — системы были предложены компанией Daikin в 1982 году. Центральные интеллектуальные системы типа VRV состоят из наружных и внутренних блоков, которые могут быть удалены друг от друга на 100 метров, причем 50 из них по вертикали. К тому же, установка VRV-систем достаточно проста и не занимает много времени. Монтаж можно вести даже после проведения отделочных работ, а при острой необходимости — не прерывая работу офиса. Возможен и поэтапный ввод мощностей, с отдельных этажей или помещений. А вот традиционные центральные системы кондиционирования надо закладывать в проект еще на стадии строительства.
КОМПРЕССИОННЫЙ ЦИКЛ ОХЛАЖДЕНИЯ ХОЛОДИЛЬНОЙ МАШИНЫ. (Теория)
Компрессионный цикл охлаждения состоит из четырех основных элементов:
Компрессора
Испарителя
Конденсатора
Регулятора потока
Эти основные элементы соединены трубопроводами в замкнутую систему, по которой циркулирует хладагент (обычно это фреон). Компрессор производит циркуляцию хладагента и поддерживает высокое давление (20-23 атм.) в конденсаторе.
Основные элементы цикла охлаждения
- На выходе из испарителя хладагент - это пар при низкой температуре и низком давлении.
- Затем компрессор всасывает хладагент, давление повышается до примерно 20 атм., а температура достигает 70 – 90оС.
- После этого горячий пар хладагента попадает в конденсатор, где он охлаждается и конденсируется. Для охлаждения используется вода или воздух. На выходе из конденсатора хладагент представляет собой жидкость под высоким давлением.
Внутри конденсатора пар должен полностью перейти в жидкое состояние. Для этого температура жидкости, выходящей из конденсатора, на несколько градусов (обычно 4-6°С) ниже температуры конденсации при данном давлении.
- Затем хладагент (имеющий в этот момент жидкое агрегатное состояние при высоких давлении и температуре) поступает в регулятор потока.
Здесь давление резко падает, и происходит частичное испарение.
- На вход испарителя попадает смесь пара и жидкости. В испарителе жидкость должна полностью перейти в парообразное состояние. Поэтому температура пара на выходе из испарителя немного выше температуры кипения при данном давлении (обычно на 5-8оС). Это необходимо, чтобы в компрессор не попали даже мелкие капли жидкого хладагента, иначе компрессор может быть поврежден.
- Образовавшийся в испарителе перегретый пар выходит из него, и цикл возобновляется сначала.
Итак, ограниченное количество хладагента постоянно циркулирует в холодильной машине, меняя агрегатное состояние при периодически изменяющихся температуре и давлении.
В каждом цикле имеется два определенных уровня давления. На стороне высокого давления происходит конденсация хладагента и находится конденсатор. На стороне низкого давления находится испаритель и жидкий хладагент превращается в пар. Граница между областями высокого и низкого давления проходит в двух точках - на выходе из компрессора (нагнетательный клапан) и на выходе из регулятора потока.
Энтальпия хладагента (необязательно рассказывать клиенту)
Описанный выше цикл охлаждения удобно изображать графически. На диаграмме показано соотношение давления и теплосодержания (энтальпии) хладагента.
Энтальпия - это функция состояния, приращение которой при процессе с постоянным давлением равно теплоте, полученной системой.
На диаграмме показана кривая насыщения хладагента.
- Левая ветвь кривой соответствует насыщенной жидкости
- Правая часть соответствует насыщенному пару.
- В критической точке ветви кривой соединяются, и вещество может находиться и в жидком, и в газообразном состоянии.
- Внутри кривой - зона, соответствующая смеси пара и жидкости.
- Слева от кривой (в области меньшей энтальпии) - переохлажденная жидкость.
- Справа от кривой (в области большей энтальпии) - перегретый пар.
Теоретический цикл охлаждения несколько отличается от реального. В действительности происходят потери давления на разных этапах перекачки хладагента, снижающие эффективность охлаждения. Это не учитывается в идеальном цикле
Теоретический цикл охлаждения
1. В компрессоре
Холодный насыщенный пар хладагента поступает в компрессор холодильной машины (точка С1). В процессе сжатия его давление и температура повышаются (точка D). Энтальпия тоже повышается на величину, равную проекции линии С1-D. На схеме это отрезок НС1-НD.
2. Конденсация
В конце цикла сжатия хладагента горячий пар попадает в конденсатор. Здесь при постоянных температуре и давлении происходит конденсация, и горячий пар превращается в горячую жидкость. Хотя температура практически постоянна, энтальпия уменьшается при фазовом переходе, а выделившееся тепло отводится от конденсатора. Этот процесс отображается на диаграмме в виде отрезка, параллельного горизонтальной оси (давление постоянно).
Процесс в конденсаторе холодильной машины происходит в три этапа: снятие перегрева (D-Е), конденсация (Е-А) и переохлаждение жидкости (А-А1). Участок диаграммы D-А1 соответствует изменению энтальпии хладагента в конденсаторе и показывает, какое количество тепла выделяется в ходе данного процесса.
- Снятие перегрева.
В этом процессе температура пара снижается до температуры насыщения. Излишнее тепло отводится, но изменения агрегатного состояния не происходит. На этом этапе снимается около 10 - 20% тепла.
- Конденсация
На этом этапе происходит изменение агрегатного состояния хладагента. Температура при этом остается постоянной. На этом этапе снимается около 60 - 80% тепла.
- Переохлаждение жидкости
В этом процессе жидкий хладагент охлаждается, при этом получается переохлажденная жидкость. Агрегатное состояние не изменяется.
Переохлаждение жидкости на этом этапе позволяет повысить производительность холодильной машины. При постоянном уровне энергопотребления понижение температуры на 1 градус повышает производительность холодильной машины на 1%.
3. Регулятор потока
Переохлажденная жидкость с параметрами точки А2 поступает на регулятор холодильной машины. Он представляет собой капиллярную трубку или терморегулирующий расширительный клапан. В регуляторе происходит резкое снижение давления. Непосредственно за регулятором начинается кипение хладагента. Параметры получившейся смеси пара и жидкости соответствуют точке В.
4. В испарителе
Смесь пара и жидкости (точка В) попадает в испаритель холодильной машины, где поглощает тепло от окружающей среды и полностью переходит в пар (точка С1). Этот процесс происходит при постоянной температуре, но энтальпия при этом увеличивается.
На выходе испарителя парообразный хладагент немного перегревается (отрезок С1-С2), чтобы капли жидкости испарились полностью. Для этого приходится увеличивать площадь теплообменной поверхности испарителя (на 4-6% на каждый градус перегрева). Обычно перегрев составляет 5-8 градусов, и увеличение площади теплообмена достигает 20%.
В испарителе холодильной машины энтальпия хладагента изменяется на величину НВ-НС2, равную проекции кривой испарения на горизонтальную ось.
Реальный цикл охлаждения
Реальный цикл охлаждения имеет некоторые отличия от идеального. Это происходит за счет потерь давления, возникающих на линии всасывания и нагнетания холодильной машины, а также в клапанах компрессора. Поэтому отображение реального цикла на диаграмме связи давления и энтальпии несколько иное.
Из-за потерь давления на входе в компрессор всасывание должно проходить при давлении, которое ниже давления испарения (отрезок C1-L). Кроме того, из-за потерь давления на выходе компрессору приходится сжимать пар хладагента до давления, которое выше давления конденсации (M-D1). Таким образом, работа сжатия увеличивается. Такая компенсация потерь давления в реальной холодильной машине снижает эффективность цикла.
Кроме потерь давления в трубопроводе, есть и другие отклонения от идеального цикла. Во-первых, реальное сжатие хладагента в компрессоре не может быть строго адиабатическим (без подвода и отвода тепла). Поэтому работа сжатия оказывается выше теоретически рассчитанной. Во-вторых, в компрессоре холодильной машины имеются механические потери энергии, что приводит к увеличению необходимой мощности электродвигателя.
Эффективность цикла охлаждения холодильной машины
Отображение на диаграмме:
C1-L - потеря давления при всасывании
M-D1 - потеря давления при выходе
HD-HC1 - теоретическое изменение энтальпии (теплосодержания) при сжатии
HD1-HC1 - реальное изменение энтальпии (теплосодержания) при сжатии
C1D - теоретическое сжатие
LM - реальное сжатие
Для выбора лучшего из циклов охлаждения необходимо оценивать их эффективность. Обычно показателем эффективности цикла холодильной машины служит КПД или коэффициент термической (термодинамической) эффективности.
Коэффициент термической эффективности - это:
- отношение изменения энтальпии хладагента в испарителе (НС-НВ) к изменению энтальпии в процессе сжатия (HD-HC).
- или: соотношение мощности охлаждения и электрической мощности, которую потребляет компрессор холодильной машины.
Например, если коэффициент термической эффективности какой-либо холодильной машины равен 2, то на каждый кВт потребляемой электроэнергии эта машина производит 2 кВт холода.
ПРИНЦИП РАБОТЫ КОНДИЦИОНЕРА (Кратко)(предназначено для клиента)
Итак, в основе работы кондиционера лежит перемещение тепла сжиженным газом, который называют хладагентом, в процессе перехода его из жидкости в пар и обратно. Т.о. процесс работы кондиционера практически ничем не отличается от процесса работы обычного холодильника. Температура кипения хладагента намного ниже температуры кипения воды. Например, температура кипения наиболее часто используемого хладагента - фреона R-22 составляет 5-10°С, в то время как вода кипит при температуре 100°С.
Рассмотрим цикл работы кондиционера в режиме охлаждения. Благодаря работе компрессора, размещенного в наружном блоке, во внутреннем блоке создается пониженное давление. Температура хладагента в этот момент равна 5-10°С, поэтому он начинает кипеть и переходит в пар. Необходимая для этого энергия поступает от теплого воздуха помещения, отдающего часть своего тепла хладагенту. Охлажденный таким образом воздух возвращается вентилятором внутреннего блока обратно в помещение.
В то же время парообразный хладагент, проходя через компрессор наружного блока, сжимается под воздействием высокого давления и температура его увеличивается до 50-60°С. Далее горячий пар охлаждается в наружном блоке и снова превращается в жидкость, отдавая тепло окружающему воздуху при помощи вентилятора наружного блока. И даже если температура окружающей среды достигает 40-45°, она все же ниже температуры хладагента. После конденсатора жидкий хладагент пропускается через капиллярную трубку. Давление при этом резко падает и температура хладагента вновь опускается до 5-10°С, в результате чего жидкость снова начинает кипеть в испарителе, поглощая тепло из охлаждаемого помещения.
Таким образом, при работе кондиционера происходит перенос тепла из среды, в которой находится испаритель (внутреннее помещение) в ту среду, где находится конденсатор (улица).
КОНСТРУКЦИЯ КОНДИЦИОНЕРА
1.Компрессоры: принцип работы и типы
Один из главных элементов любой холодильной машины - это компрессор.
Компрессор всасывает пар хладагента, имеющий низкие температуру и давление, затем сжимает его, повышая температуру (до 70 - 90°С) и давление (до 15 - 25 атм.), а затем направляет парообразный хладагент к конденсатору.
Основные характеристики компрессора - степень компрессии (сжатия) и объем хладагента, который он может нагнетать. Степень сжатия - это отношение максимального выходного давления паров хладагента к максимальному входному.
В холодильных машинах используют компрессоры двух типов:
- поршневые - с возвратно-поступательным движением поршней в цилиндрах;
- ротационные, винтовые и спиральные- с вращательным движением рабочих частей.
Поршневые компрессоры
Поршневые компрессоры используются чаще всего в машинах большой мощности. Принцип их работы показана на схеме.
При движении поршня (3) вверх по цилиндру компрессора (4) хладагент сжимается. Поршень перемещается электродвигателем через коленчатый вал (6) и шатун (5).
Под действием давления пара открываются и закрываются всасывающие и выпускные клапаны компрессора холодильной машины.
На схеме 1 показана фаза всасывания хладагента в компрессор. Поршень начинает опускаться вниз от верхней точки, при этом в камере компрессора создается разрежение и открывается впускной клапан (12). Парообразный хладагент низкой температуры и низкого давления попадает в рабочее пространство компрессора.
На схеме 2 показана фаза сжатия пара и его выхода из компрессора. Поршень поднимается вверх и сжимает пар. При этом открывается выпускной клапан компрессора (1) и пар под высоким давлением выходит из компрессора.
Основные модификации поршневых компрессоров(отличаются конструкцией, типом двигателя и назначением):
- герметичные компрессоры;
- полугерметичные компрессоры;
- открытые компрессоры.
Герметичные компрессоры:
Используются в холодильных машинах небольшой мощности (1.5 - 35 кВт). Электродвигатель расположен внутри герметичного корпуса компрессора. Охлаждение электродвигателя производится самими всасываемым хладагентом.
Полугерметичные компрессоры:
Используются в холодильных машинах средней мощности (30 - 300 кВт). В полугерметичных компрессорах электродвигатель и компрессор соединены напрямую и размещены в одном разборном контейнере. Преимущество этого типа компрессоров в том, что при повреждениях можно вынуть двигатель, чтобы ремонтировать клапаны, поршень и др. части компрессора. Охлаждение электродвигателя производится самими всасываемым хладагентом.
Открытые компрессоры:
Имеют внешний электродвигатель, выведенный за пределы корпуса, и соединенный с компрессором напрямую или через трансмиссию.
Мощность многих холодильных установок может плавно регулироваться с помощью инверторов - специальных устройств, изменяющих скорость вращения компрессора.
В полугерметичных компрессорах возможен и другой способ регулировки мощности - перепуском пара с выхода на вход либо закрытием част всасывающих клапанов.
Основные недостатки поршневых компрессоров:
- пульсации давления паров хладагента на выходе, приводящие к высокому уровню шума.
- большие нагрузки при пуске, требующие большого запаса мощности и приводящие к износу компрессора.
Ротационные компрессоры вращения (наиболее часто применяемые)
Принцип работы ротационных компрессоров вращения основан на всасывании и сжатии газа при вращении пластин.
Их преимущество перед поршневыми компрессорами состоит в низких пульсациях давления и уменьшении тока при запуске.
Существует две модификации ротационных компрессоров:
- со стационарными пластинами;
- с вращающимися пластинами.
Компрессор со стационарными пластинами
В компрессоре со стационарными пластинами хладагент сжимается при помощи эксцентрика, установленного на ротор двигателя. При вращении ротора эксцентрик катится по внутренней поверхности цилиндра компрессора, и находящийся перед ним пар хладагента сжимается, а затем выталкивается через выпускной клапан компрессора. Пластины разделяют области высокого и низкого давления паров хладагента внутри цилиндра компрессора.
1.Пар заполняет имеющееся пространство
2.Начинается сжатие пара внутри компрессора и всасывание новой порции хладагента
3.Сжатие и всасывание продолжается
4.Сжатие завершено, пар окончательно заполнил пространство внутри цилиндра компрессора.
Компрессор с вращающимися пластинами
В компрессоре с вращающимися пластинами хладагент сжимается при помощи пластин, закрепленных на вращающемся роторе. Ось ротора смещена относительно оси цилиндра компрессора. Края пластин плотно прилегают к поверхности цилиндра, разделяя области высокого и низкого давления. На схеме показан цикл всасывания и сжатия пара.
Пар заполняет имеющееся пространство
Начинается сжатие пара внутри компрессора и всасывание новой порции хладагента
Сжатие и всасывание завершается.
Начинается новый цикл всасывания и сжатия.
Компрессора, на одном валу которых расположено два ротора, называют двуроторными.
Спиральные компрессоры SCROLL
Спиральные компрессоры применяются в холодильных машинах малой и средней мощности.
Такой компрессор состоит из двух стальных спиралей. Они вставлены одна в другую и расширяются от центра к краю цилиндра компрессора. Внутренняя спираль неподвижно закреплена, а внешняя вращается вокруг нее.
Спирали имеют особый профиль (эвольвента), позволяющий перекатываться без проскальзывания. Подвижная спираль компрессора установлена на эксцентрике и перекатывается по внутренней поверхности другой спирали. При этом точка касания спиралей постепенно перемещается от края к центру. Пары хладагента, находящиеся перед линией касания, сжимаются, и выталкиваются в центральное отверстие в крышке компрессора. Точки касания расположены на каждом витке внутренней спирали, поэтому пары сжимаются более плавно, меньшими порциями, чем в других типах компрессоров. В результате нагрузка на электродвигатель компрессора снижается, особенно в момент пуска компрессора.
Пары хладагента поступают через входное отверстие в цилиндрической части корпуса, охлаждают двигатель, затем сжимаются между спиралей и выходят через выпускное отверстие в верхней части корпуса компрессора.
Недостатки спиральных компрессоров:
- Сложность изготовления и, как следствие, высокая цена;
- необходимо очень точное прилегание спиралей и герметичность по их торцам.
Винтовые компрессоры (применяются в мощных машинах (для информации))
Винтовые компрессоры применяются в холодильных машинах большой мощности (150 - 3500 кВт). Существуют две модификации этого типа:
- с одинарным винтом
- с двойным винтом
Винтовой компрессор с одинарным винтом:
Модели с одинарным винтом имеют одну или две шестерни-сателлита, подсоединенные к ротору с боков.
Сжатие паров хладагента происходит с помощью вращающихся в разные стороны роторов. Их вращение обеспечивает центральный ротор в виде винта.
Пары хладагента поступают через входное отверстие компрессора, охлаждают двигатель, затем попадают во внешний сектор вращающихся шестеренок роторов, сжимаются и выходят через скользящий клапан в выпускное отверстие.
Винты компрессора должны прилегать герметично, поэтому используется смазывающее масло. Впоследствии масло отделяется от хладагента в специальном сепараторе компрессора.
Винтовой компрессор с двойным винтом:
Модели с двойным винтом отличаются использованием двух роторов - основного и приводного.
Винтовые компрессоры не имеют впускных и выпускных клапанов. Всасывание хладагента постоянно происходит с одной стороны компрессора, а его выпускание - с другой стороны. При таком способе сжатия паров уровень шума гораздо ниже, чем у поршневых компрессоров.
Винтовые компрессоры позволяют плавно регулировать мощность холодильной машины с помощью изменения частоты оборотов двигателя.
2.Теплообменник
Кондиционер содержит в себе внешний и внутренний теплообменники. Их функция - осуществлять теплообмен между хладагентом и воздухом окружающей среды. Во время охлаждения внутренний теплообменник называется испарителем, а внешний конденсатором. Во время нагрева - наоборот. Испаритель - поглощает тепло из помещения и понижает его температуру. Конденсатор - заставляет хладагент выделять тепло в окружающую среду и конденсирует хладагент в жидкость.
Теплообменник состоит из теплообменных пластин и медных трубок. Пластины на медных трубках усиливают эффект теплообмена. Движимый вентилятором воздух проходит через поверхность теплообменника, который заставляет хладагент выделять тепло в окружающую среду.
Основные неполадки во время работы теплообменника связаны с тем, что пыль забивает теплообменные каналы, это серьезно влияет на работу теплообменника. Здесь важно регулярно прочищать теплообменник вручную или, используя пылесос или сжатый воздух.
3.Терморегулирующий вентиль
Для того чтобы жидкий хладагент мог испаряться, необходимо снизить его давление. Для этого на выходном отверстии конденсатора устанавливается препятствие, ограничивающее объем проходящего через него фреона. Как правило для этого используется длинная тонкая трубка, называемая капиллярной трубкой. После прохождения жидкого хладагента через капиллярную трубку его давление падает и он попадает в испаритель.
4.Четырех ходовой клапан
Четырех ходовой реверсивный клапан предназначен для изменения направления движения хладагента. Во время работы в режиме "охлаждение" газ с высокой температурой и давлением поступает во внешний теплообменник через клапан. Во время работы в режиме "нагрев" клапан направляет газ с высокой температурой и давлением во внутренний теплообменник. Состоит из основного и распределительного клапанов.
ПРИНЦИП РАБОТЫ КОНДИЦИОНЕРА НА ТЕПЛО
Летом поток воздуха из внешнего блока кондиционера теплый, таким образом, логично предположить, что, меняя внутренний и внешний блоки местами, кондиционер можно использовать на обогрев зимой. Однако это нецелесообразно. Вместо того чтобы менять внутренний и внешний блоки местами используют деталь, называемую четырехходовый реверсивный клапан, для изменения направления движения потока хладагента. Данный метод, названный обогрев в режиме теплового насоса, основан на принципе забора теплоты из воздуха вне помещения и ее переноса в воздух, находящийся внутри помещения.
Если температура на улице всего 7оС, то температура, при которой происходит испарение хладагента во внешнем теплообменнике, все равно ниже (от 0 до 3оС). Такой градиент температур (4…7оС) позволяет обирать теплоту из воздуха снаружи и передавать ее внутрь помещения.
Однако чем ниже опускается температура на улице, тем меньше становится градиент температур и тем труднее отобрать теплоту из воздуха. Другими словами, мощность обогрева падает по мере понижения температуры на улице.
Когда температура на улице падает до 5оС, температура испарения внешнего теплообменника падает ниже 0оС. В результате содержащаяся в воздухе влага осаждается на теплообменник в виде инея. Если этот иней не удалять, то его будет накапливаться все больше и больше, в результате чего будет остановлен поток воздуха через теплообменник и, следовательно, перестанет осуществляться отбор теплоты из уличного воздуха. Чтобы этого не произошло, необходимо своевременно счищать иней с теплообменника. Для этого в процессе обогрева рабочий цикл переключается с обогрева на охлаждение и, теплота, отдаваемая газообразным хладагентом, способствует устранению инея. Данный процесс во многих каталогах называют «разморозка обратным циклом».