ЭКОЛОГИЯ КЛЕТКИ. Аутэкология организма — это важный и хорошо разработанный раздел современной экологии животных и растений. В отношении почвенных микроорганизмов он почти не разрабатывался, так как считали, что клетки настолько малы, что здесь трудно получить ценные сведения. Вся физиология и биохимия разрабатываются на популяционном уровне (в отличие от растений и животных). Однако аутэкологии микроорганизмов следует уделять больше внимания. Изучение величины и морфологии клетки дает много ценного. Организм и среда неразделимы. Эколог говорит: «Скажите, какова среда, и я отвечу, какие организмы здесь обитают. Скажите, каковы организмы, и я отвечу на вопрос об особенностях среды». Если известно кое-что о природе окружающих условий, то можно предсказать экологические особенности организмов, можем найти их. Напротив, если известно что-то об организмах, которых нашли в данном местообитании, тогда можно предсказать кое-что о природе окружающих условий. При проведении аутэкологических исследований исследователь должен постоянно переходить от опытов с лабораторными средами к опытам с почвой, используя все наблюдения как дополняющие друг друга.
Рис.1. /Морфологическое различие типов бактериальных клеток/.
Формы микроорганизмов разнообразны, что имеет большой экологический смысл (рис. 1). Форма фаготрофных организмов, например амеб, определяется их потребностью поглощать клетки бактерий или частицы органического вещества. Однако подавляющее большинство микроорганизмов поглощает только молекулы, причем в основном мелкие молекулы, но не полимеры. Форма палочек, спирилл и нитей по сравнению с шаром (кокки) увеличивает поверхность клеточной мембраны. В бедных средах больше этих форм, чем кокков. Это правило часто не выполняется для почв, однако, здесь кокковидную форму обычно имеют покоящиеся клетки. Сферические формы более устойчивы к высушиванию, вероятно, из-за более равномерного давления на клетку во время высушивания. Кокки и дрожжи являются наиболее обыкновенными аспорогенными микроорганизмами воздуха.
Олиготрофные бактерии в почве имеют различные выросты, стебельки, простеки и другие, что позволяет им увеличить площадь поверхности и собирать питание из разбавленных растворов. Строение клетка-стебелек-клетка позволяет видам, откладывающим на своей поверхности чехол из железа и марганца и образующим в почве ортштейны, выбраться из чехла и продолжать рост на поверхности железо-марганцевых конкреций (сравни с кораллами). Некоторые почвенные бактерии на богатой питательной среде имеют форму шара, но на бедной среде приобретают форму звезды (Stella humosa), т.е. резко увеличивают площадь поверхности.
Особое значение для жизни в почве имеет мицелиальное строение (грибы, актиномицеты). Нитчатое строение с верхушечным ростом в почве как в гетерогенной микрозональной среде дает такому микроорганизму явное преимущество. Он преодолевает микрозоны без источников питания и ищет благоприятные условия. Мицелиальные микроорганизмы — это типичные почвенные организмы (в отличие от водных). В почве грибы победили бактерии и стали главными потребителями растительных остатков, хотя в прежние геологические эпохи в воде в цианобактериальных матах, которые господствовали на земле, основными деструкторами были бактерии. Толщина мицелия актиномицетов в 5-10 раз тоньше мицелия грибов, они медленно растут и им труднее преодолевать большие пространства. Однако по биомассе в почве они составляют 25% общей биомассы прокариот. В их прогрессе большое значение имеет то, что они обладают мицелиаль- ным ростом, являются активными гидролитиками и образуют разнообразные антибиотики (стрептомицин, тетрациклины, ле- вомицетин и многие другие). Размеры микроорганизмов имеют важнейшее экологическое значение и по диаметру варьируют в десятки тысяч раз: вирус 200 А, микоплазма 1000 А, бактерия 10 тыс.
А (1 мкм), толщина гиф грибов ЮОтыс. А (10 мкм), амеба 1 млн А (100 мкм). Одни из них благодаря гравитационным силам подвергаются быстрому осаждению, другие из-за броуновского движения вообще не осаждаются. Для осаждения большую роль играет подвижность клеток. Величина клеток имеет большое значение для скорости обменных процессов. В экологии существует общий закон: чем крупнее организм, тем медленнее он размножается. До сих пор неясно, насколько этот закон применим к микроорганизмам, видимо, если он и применим, то только частично. Максимальная удельная скорость роста микроорганизмов запрограммирована генетически.
Ригидность клеточной стенки микробов очень важна для поддержания внутри клетки повышенного осмотического давления. Клетки экстремальных галофилов (архебактерий) находятся в осмотическом равновесии с окружающей средой. Их клеточные стенки имеют особое строение и стабилизируются ионами калия и натрия.
Большое значение для экологии имеют поверхностные структуры. Гидрофильность или гидрофобность клеточной поверхности определяет местоположение клетки в жидкой среде. Гидрофобные клетки образуют на поверхности пленку, они располагаются на гидрофобных участках поверхности почвенных частиц, а гидрофильные — в водной толще или на дне. Они будут адгезиро- ваться на гидрофильных почвенных частицах. Важен положительный или отрицательный заряд клетки. Правда, в большинстве случаев он мозаичный. На поверхности клеток бактерий часто находятся фимбрии и пили, которые служат для прикрепления или переноса генетического материала. В некоторых случаях адгезия клеток определяется специфическими химическими взаимодействиями адгезина и рецептора по принципу ключ-замок. Клеточные капсулы предохраняют клетки от действия ферментов и обусловливают устойчивость к неблагоприятным факторам. Капсулы часто служат убежищем для микробов-спутников.
Клетки некоторых бактерий имеют внутриклеточные газовые вакуоли, а другие — внеклеточные газовые баллоны. Они важны для газообмена и для изменения положения клеток в воде, капиллярах и водных пленках.
Особый интерес в последнее десятилетие вызывают магнито- бактерии, содержащие в своих клетках магнитосомы с мельчайшими магнитиками (до 100 частиц на клетку). Они дают ориентацию клеткам в магнитном поле Земли. В Северном полушарии клетки должны двигаться к Северному полюсу. Экологическое объяснение этому явлению трудно найти. Однако по линиям магнитного поля клетки должны двигаться не просто на север, но и на дно водоемов, чтобы оказаться в толще ила. Это уже может иметь разумное экологическое объяснение. Магнитобак- терии в большом количестве содержатся и в почве. Зачем им нужны магнитные свойства, пока трудно объяснить.
Движение с помощью жгутиков или скользящее движение помогает клеткам выбирать наиболее благоприятную зону, а также способствует их расселению. Эндоспоры бацилл, клостридий и стадии глубокого анабиоза у других родов бактерий представляют большой интерес для аут- экологии как стадии жизни, в которых не выявляются метаболические процессы. Эти формы устойчивы к экстремальным условиям и отличаются долговечностью.
Особо изучаются половые споры грибов, которые характеризуются специфическими свойствами. Конидии грибов и актиномицетов обладают существенным метаболизмом, но также служат для сохранения вида. Грибы очень долго могут сохранять жизнеспособность в сухом состоянии. Экспериментально показано, что это могут быть тысячи лет, например, в гробницах фараонов, а в замороженном состоянии в вечной мерзлоте — миллионы лет. Вероятно, грибы, как и бактерии, имеют структуры, сохраняющиеся в состоянии глубокого покоя очень долго даже при физиологически благоприятных условиях (влажность, температура, питание), но здесь нужны экспериментальные доказательства.
Имеется еще множество свойств клеток, которые должна рассматривать аутэкология.
ЭКОЛОГИЯ ПОПУЛЯЦИЙ.
Экология популяций чистых культур микроорганизмов изучена наиболее досконально по сравнению с животными и растениями. Кинетика роста микробных популяций выражена в математических формулах, установлены многие важные закономерности роста.
Однако изучение микробных популяций непосредственно в почве не проводилось, так как не было методов для проведения таких исследований, но в последнее время такие методы появились. Генетическая маркировка. В почву вносится штамм микроорганизма, маркированный по какому-либо свойству, например, антибиотикоустойчивости. Он вносится в почву и затем следят за его судьбой. Для определения численности внесенного микроорганизма на разных этапах развития из почвы делаются высевы на питательную среду с антибиотиком, являющуюся элективной для данного штамма. Колонии дают только клетки внесенного штамма, а собственно почвенные микроорганизмы не растут. Генетическая маркировка проводится также при введении генов, кодирующих образование фермента, расщепляющего бесцветное вещество с освобождением его части, обладающей окраской. Тогда колонии внесенного штамма в отличие от всех остальных оказываются окрашенными, их легко отличить. Микроскопическая иммунолюминесценция (метод флуоресцирующих антител). С помощью люминесцентной микроскопии изучается серологическая реакция между антителами и антигенами, причем до реакции антитела соединяются с флуорохромами.
Метод основан на способности флуорохромов вступать в связь с антителами без ущерба для присущей антителу специфичности в связывании антигена. Для разных объектов эта реакция может быть штаммо-, видо- или родоспецифичной. Для клубеньковых бактерий она использовалась наиболее часто и является штаммоспецифичной. Использование штаммов или видов легко определяемых по своим культуральным свойствам. Это либо специфический вид колоний (бациллы, многие актиномицеты и грибы), либо образование пигмента.
Для изучения динамики популяции был использован актиномицет, образующий люминесцирующий антибиотик гелиомицин. Благодаря наличию антибиотика колонии актиномицета при освещении их ультрафиолетовыми лучами приобретают характерное яркое оранжевое свечение и тогда их легко отличить среди других микроорганизмов, вырастающих на питательной среде. Полевые опыты, продолжавшиеся в течение года, показали (рис. 2):
Рис. 2. /Динамика популяции Slreptomyces olivocinereus и аутохтонных актиномице- тов в дерново-подзолистой почве (полевой опыт): / — аутохтонные актиномицеты; 2 — Str. olivocinereus (внесен мицелий); 3— Str. olivocinereus (внесены споры); N — численность колоний вития актиномицета во времени. Резкие колебания численности отмечаются на протяжении первых трех месяцев после внесения. Затем популяционная численность стабилизируется на уровне 106 клеток на 1 г и остается постоянной в течение девяти месяцев. Внесенный актиномицет вписывается в общий актиномицетный комплекс почвы и в общих чертах повторяет динамику его развития. Форма внесения актиномицета (споры или мицелий) не оказывает решающего влияния на общую картину динамики/.
Динамика популяции этого актиномицета зависит от особенностей типа почвы (рис. 106). В среднеазиатском сероземе, из которого этот актиномицет был выделен, после падения численности, что наблюдается довольно сложная картина раздает резкий подъем и затем стабилизируется на очень высоком уровне 10, а в кислом красноземе он погибает.
В ризосфере пшеницы одни бактерии быстро погибают, другие успешно размножаются (рис. 3):
Популяционная микробиология в почвах наиболее полно изучена на внесенных штаммах микробов и в первую очередь клубеньковых бактерий (рис. 4):
После внесения в почву численность клубеньковых бактерий либо возрастает, либо уменьшается, либо они вообще вымирают. Увеличение численности свидетельствует о том, что почва оказалась благоприятной средой, и бактерии в ней активно размножаются. Их численность может увеличиваться в 10-100 раз. В мало благоприятной почве внесенные клубеньковые бактерии сохраняются только в тех микрозонах, которые оказались для них благоприятными и погибают в неблагоприятных микрозонах. Численность благоприятных зон можно увеличить например, путем внесения в почву органического вещества. В этом случае клубеньковые бактерии развиваются лучше и, что главное, уровень стабилизации оказывается выше.
Были выявлены следующие закономерности, необычные для животных и растений. Большинство внесенных микроорганизмов сохраняется в почве и их численность стабилизируется на определенном уровне. Обычно это динамическое равновесие, когда число нарастающих клеток равно числу отмирающих клеток, а может быть статическое равновесие, при котором клетки не отмирают и не размножаются, но находятся в состоянии анабиоза. При внесении популяции в почву с множеством неблагоприятных зон общая численность падает, а при внесении в хорошую почву — возрастает. Если внесенный микроорганизм погибает, то это означает, что он является чужеродным для данной почвы (непочвенным). В зависимости от численности внесенной популяции уровень стабилизации будет различным. Чем выше внесенная численность, тем выше уровень стабилизации (рис. 109):
Рис. 5. /Влияние начальной численности на уровень стабилизации популяции: 1 — высокая численность, 2 — средняя чис- ленность, 3— низкая численность, популяция исчезает/.
Это объясняется тем, что стабилизация или размножение клеток происходят в микрозонах, и не все они благоприятны для микроба. Чем больше клеток, тем больше благоприятных зон окажутся заселенными микроорганизмами. Численность благоприятных зон можно увеличить, например внесением органического вещества, и тогда уровень стабилизации повышается. Для растений и особенно животных устанавливается определенная величина «емкости среды», выше которой численность подниматься не может или вслед за повышением численности наступает катастрофа. Для микробов такой закономерности не существует, так как почва для микробов — это не единая среда обитания, а множество микросред с различными условиями. Более однородной представляется среда ризопланы, где возможен единый уровень стабилизации, не зависящий от уровня внесения. Рост внесенной популяции, конечно, зависит от внесения в почву питательных веществ, изменения влажности почвы и т.д. Он будет различным в зависимости от стадии сукцессии, в которой в данный момент времени находится комплекс почвенных микроорганизмов и других условий.
При достижении популяцией очень высокого уровня начинают действовать механизмы антибиоза со стороны почвенных микроорганизмов, которые приводят к понижению их численности (рис. ПО). Это действие хищников (простейших), паразитов (бделловибрионы), микробов антагонистов (продуценты антибиотиков). При низкой численности популяции, напротив, действуют механизмы метабиоза (почвенные гидролазы образуют легкодоступные мономеры), повышающие численность популяции. В результате действия этих механизмов популяции обычно стабилизируются на среднем уровне.
Обнаружено, что внесенная популяция даже на уровне 106-7 на 1 г почвы почти не влияет на численность бактерий, определяемую прямым микроскопическим методом. В то же время, если внести две популяции, например, микроба антагониста и чувствительного к антибиотику микроорганизма или микроба гидролитика и микроба, не обладающего гидролитической активностью (рис. 6):
то вторая популяция явно отвечает на внесение первой, т.е. две разные внесенные клетки взаимодействуют, несмотря на то, что они разделены тысячами аборигенных бактерий.
В почве содержится 109, а внесли 106-7 клеток. Это связано с тем, что большинство почвенных бактерий находится в неактивном состоянии, а внесенные — в активном.
Для почвенных микробиологов нет ничего более желательного и необходимого, чем управление микробными популяциями в почве. Это могут быть микробы, разлагающие нефть, пестициды, микробы азотфиксаторы, продуценты физиологически активных веществ идр. Обычно ставится задача интенсификации деятельности определенной группы микроорганизмов, но иногда необходимо и подавление. Например, применяются специальные ингибиторы нитрификации для подавления автотрофных нит- рификаторов, проводящих первую фазу этого процесса.
Регулируя окружающие условия, можно по намеченной схеме повышать, понижать или поддерживать на определенном уровне численность популяции в почве (рис. 4):
Динамика популяции внесенного в естественную нестерильную почву микроорганизма: а— популяция имеет резко выраженный максимум численности, а затем погибает; б— популяция имеет резко выраженный максимум численности, а затем стабилизируется на достаточно высоком уровне; в, д— численность популяции сохраняется на уровне внесения; г — уровень популяционной плотности повышается после внесения, и равновесие наступает при высокой популяционной плотности; N — численность клеток на I г почвы
Так, внесение простых сахаров дает возможность поднять численность популяции.
"КОНЦЕПТУАЛЬНАЯ ЭКОЛОГИЯ"
ПОЧВОВЕДЕНИЕ.
ЭКОЛОГИЯ КЛЕТКИ.
Аутэкология организма — это важный и хорошо разработанный раздел современной экологии животных и растений. В отношении почвенных микроорганизмов он почти не разрабатывался, так как считали, что клетки настолько малы, что здесь трудно получить ценные сведения.
Вся физиология и биохимия разрабатываются на популяционном уровне (в отличие от растений и животных). Однако аутэкологии микроорганизмов следует уделять больше внимания. Изучение величины и морфологии клетки дает много ценного.
Организм и среда неразделимы. Эколог говорит: «Скажите, какова среда, и я отвечу, какие организмы здесь обитают. Скажите, каковы организмы, и я отвечу на вопрос об особенностях среды». Если известно кое-что о природе окружающих условий, то можно предсказать экологические особенности организмов, можем найти их. Напротив, если известно что-то об организмах, которых нашли в данном местообитании, тогда можно предсказать кое-что о природе окружающих условий. При проведении аутэкологических исследований исследователь должен постоянно переходить от опытов с лабораторными средами к опытам с почвой, используя все наблюдения как дополняющие друг друга.
Формы микроорганизмов разнообразны, что имеет большой экологический смысл (рис. 1). Форма фаготрофных организмов, например амеб, определяется их потребностью поглощать клетки бактерий или частицы органического вещества. Однако подавляющее большинство микроорганизмов поглощает только молекулы, причем в основном мелкие молекулы, но не полимеры. Форма палочек, спирилл и нитей по сравнению с шаром (кокки) увеличивает поверхность клеточной мембраны. В бедных средах больше этих форм, чем кокков. Это правило часто не выполняется для почв, однако, здесь кокковидную форму обычно имеют покоящиеся клетки. Сферические формы более устойчивы к высушиванию, вероятно, из-за более равномерного давления на клетку во время высушивания. Кокки и дрожжи являются наиболее обыкновенными аспорогенными микроорганизмами воздуха.
Олиготрофные бактерии в почве имеют различные выросты, стебельки, простеки и другие, что позволяет им увеличить площадь поверхности и собирать питание из разбавленных растворов. Строение клетка-стебелек-клетка позволяет видам, откладывающим на своей поверхности чехол из железа и марганца и образующим в почве ортштейны, выбраться из чехла и продолжать рост на поверхности железо-марганцевых конкреций (сравни с кораллами). Некоторые почвенные бактерии на богатой питательной среде имеют форму шара, но на бедной среде приобретают форму звезды (Stella humosa), т.е. резко увеличивают площадь поверхности.
Особое значение для жизни в почве имеет мицелиальное строение (грибы, актиномицеты). Нитчатое строение с верхушечным ростом в почве как в гетерогенной микрозональной среде дает такому микроорганизму явное преимущество. Он преодолевает микрозоны без источников питания и ищет благоприятные условия. Мицелиальные микроорганизмы — это типичные почвенные организмы (в отличие от водных). В почве грибы победили бактерии и стали главными потребителями растительных остатков, хотя в прежние геологические эпохи в воде в цианобактериальных матах, которые господствовали на земле, основными деструкторами были бактерии. Толщина мицелия актиномицетов в 5-10 раз тоньше мицелия грибов, они медленно растут и им труднее преодолевать большие пространства. Однако по биомассе в почве они составляют 25% общей биомассы прокариот. В их прогрессе большое значение имеет то, что они обладают мицелиаль- ным ростом, являются активными гидролитиками и образуют разнообразные антибиотики (стрептомицин, тетрациклины, ле- вомицетин и многие другие).
Размеры микроорганизмов имеют важнейшее экологическое значение и по диаметру варьируют в десятки тысяч раз: вирус 200 А, микоплазма 1000 А, бактерия 10 тыс.
А (1 мкм), толщина гиф грибов ЮОтыс. А (10 мкм), амеба 1 млн А (100 мкм). Одни из них благодаря гравитационным силам подвергаются быстрому осаждению, другие из-за броуновского движения вообще не осаждаются. Для осаждения большую роль играет подвижность клеток. Величина клеток имеет большое значение для скорости обменных процессов. В экологии существует общий закон: чем крупнее организм, тем медленнее он размножается. До сих пор неясно, насколько этот закон применим к микроорганизмам, видимо, если он и применим, то только частично. Максимальная удельная скорость роста микроорганизмов запрограммирована генетически.
Ригидность клеточной стенки микробов очень важна для поддержания внутри клетки повышенного осмотического давления. Клетки экстремальных галофилов (архебактерий) находятся в осмотическом равновесии с окружающей средой. Их клеточные стенки имеют особое строение и стабилизируются ионами калия и натрия.
Большое значение для экологии имеют поверхностные структуры. Гидрофильность или гидрофобность клеточной поверхности определяет местоположение клетки в жидкой среде. Гидрофобные клетки образуют на поверхности пленку, они располагаются на гидрофобных участках поверхности почвенных частиц, а гидрофильные — в водной толще или на дне. Они будут адгезиро- ваться на гидрофильных почвенных частицах. Важен положительный или отрицательный заряд клетки. Правда, в большинстве случаев он мозаичный. На поверхности клеток бактерий часто находятся фимбрии и пили, которые служат для прикрепления или переноса генетического материала. В некоторых случаях адгезия клеток определяется специфическими химическими взаимодействиями адгезина и рецептора по принципу ключ-замок.
Клеточные капсулы предохраняют клетки от действия ферментов и обусловливают устойчивость к неблагоприятным факторам. Капсулы часто служат убежищем для микробов-спутников.
Клетки некоторых бактерий имеют внутриклеточные газовые вакуоли, а другие — внеклеточные газовые баллоны. Они важны для газообмена и для изменения положения клеток в воде, капиллярах и водных пленках.
Особый интерес в последнее десятилетие вызывают магнито- бактерии, содержащие в своих клетках магнитосомы с мельчайшими магнитиками (до 100 частиц на клетку). Они дают ориентацию клеткам в магнитном поле Земли. В Северном полушарии клетки должны двигаться к Северному полюсу. Экологическое объяснение этому явлению трудно найти. Однако по линиям магнитного поля клетки должны двигаться не просто на север, но и на дно водоемов, чтобы оказаться в толще ила. Это уже может иметь разумное экологическое объяснение. Магнитобак- терии в большом количестве содержатся и в почве. Зачем им нужны магнитные свойства, пока трудно объяснить.
Движение с помощью жгутиков или скользящее движение помогает клеткам выбирать наиболее благоприятную зону, а также способствует их расселению.
Эндоспоры бацилл, клостридий и стадии глубокого анабиоза у других родов бактерий представляют большой интерес для аут- экологии как стадии жизни, в которых не выявляются метаболические процессы. Эти формы устойчивы к экстремальным условиям и отличаются долговечностью.
Особо изучаются половые споры грибов, которые характеризуются специфическими свойствами. Конидии грибов и актиномицетов обладают существенным метаболизмом, но также служат для сохранения вида. Грибы очень долго могут сохранять жизнеспособность в сухом состоянии. Экспериментально показано, что это могут быть тысячи лет, например, в гробницах фараонов, а в замороженном состоянии в вечной мерзлоте — миллионы лет. Вероятно, грибы, как и бактерии, имеют структуры, сохраняющиеся в состоянии глубокого покоя очень долго даже при физиологически благоприятных условиях (влажность, температура, питание), но здесь нужны экспериментальные доказательства.
Имеется еще множество свойств клеток, которые должна рассматривать аутэкология.
ЭКОЛОГИЯ ПОПУЛЯЦИЙ.
Экология популяций чистых культур микроорганизмов изучена наиболее досконально по сравнению с животными и растениями. Кинетика роста микробных популяций выражена в математических формулах, установлены многие важные закономерности роста.
Однако изучение микробных популяций непосредственно в почве не проводилось, так как не было методов для проведения таких исследований, но в последнее время такие методы появились. Генетическая маркировка. В почву вносится штамм микроорганизма, маркированный по какому-либо свойству, например, антибиотикоустойчивости. Он вносится в почву и затем следят за его судьбой. Для определения численности внесенного микроорганизма на разных этапах развития из почвы делаются высевы на питательную среду с антибиотиком, являющуюся элективной для данного штамма. Колонии дают только клетки внесенного штамма, а собственно почвенные микроорганизмы не растут. Генетическая маркировка проводится также при введении генов, кодирующих образование фермента, расщепляющего бесцветное вещество с освобождением его части, обладающей окраской. Тогда колонии внесенного штамма в отличие от всех остальных оказываются окрашенными, их легко отличить. Микроскопическая иммунолюминесценция (метод флуоресцирующих антител). С помощью люминесцентной микроскопии изучается серологическая реакция между антителами и антигенами, причем до реакции антитела соединяются с флуорохромами.
Метод основан на способности флуорохромов вступать в связь с антителами без ущерба для присущей антителу специфичности в связывании антигена. Для разных объектов эта реакция может быть штаммо-, видо- или родоспецифичной. Для клубеньковых бактерий она использовалась наиболее часто и является штаммоспецифичной. Использование штаммов или видов легко определяемых по своим культуральным свойствам. Это либо специфический вид колоний (бациллы, многие актиномицеты и грибы), либо образование пигмента.
Для изучения динамики популяции был использован актиномицет, образующий люминесцирующий антибиотик гелиомицин. Благодаря наличию антибиотика колонии актиномицета при освещении их ультрафиолетовыми лучами приобретают характерное яркое оранжевое свечение и тогда их легко отличить среди других микроорганизмов, вырастающих на питательной среде. Полевые опыты, продолжавшиеся в течение года, показали (рис. 2):
/ — аутохтонные актиномицеты; 2 — Str. olivocinereus (внесен мицелий); 3— Str. olivocinereus (внесены споры); N — численность колоний
вития актиномицета во времени. Резкие колебания численности отмечаются на протяжении первых трех месяцев после внесения. Затем популяционная численность стабилизируется на уровне 106 клеток на 1 г и остается постоянной в течение девяти месяцев. Внесенный актиномицет вписывается в общий актиномицетный комплекс почвы и в общих чертах повторяет динамику его развития. Форма внесения актиномицета (споры или мицелий) не оказывает решающего влияния на общую картину динамики/.
Динамика популяции этого актиномицета зависит от особенностей типа почвы (рис. 106). В среднеазиатском сероземе, из которого этот актиномицет был выделен, после падения численности, что наблюдается довольно сложная картина раздает резкий подъем и затем стабилизируется на очень высоком уровне 10, а в кислом красноземе он погибает.
В ризосфере пшеницы одни бактерии быстро погибают, другие успешно размножаются (рис. 3):
Были выявлены следующие закономерности, необычные для животных и растений. Большинство внесенных микроорганизмов сохраняется в почве и их численность стабилизируется на определенном уровне. Обычно это динамическое равновесие, когда число нарастающих клеток равно числу отмирающих клеток, а может быть статическое равновесие, при котором клетки не отмирают и не размножаются, но находятся в состоянии анабиоза. При внесении популяции в почву с множеством неблагоприятных зон общая численность падает, а при внесении в хорошую почву — возрастает. Если внесенный микроорганизм погибает, то это означает, что он является чужеродным для данной почвы (непочвенным). В зависимости от численности внесенной популяции уровень стабилизации будет различным. Чем выше внесенная численность, тем выше уровень стабилизации (рис. 109):
популяции: 1 — высокая численность, 2 — средняя чис-
ленность, 3— низкая численность, популяция исчезает/.
Это объясняется тем, что стабилизация или размножение клеток происходят в микрозонах, и не все они благоприятны для микроба. Чем больше клеток, тем больше благоприятных зон окажутся заселенными микроорганизмами. Численность благоприятных зон можно увеличить, например внесением органического вещества, и тогда уровень стабилизации повышается. Для растений и особенно животных устанавливается определенная величина «емкости среды», выше которой численность подниматься не может или вслед за повышением численности наступает катастрофа. Для микробов такой закономерности не существует, так как почва для микробов — это не единая среда обитания, а множество микросред с различными условиями. Более однородной представляется среда ризопланы, где возможен единый уровень стабилизации, не зависящий от уровня внесения. Рост внесенной популяции, конечно, зависит от внесения в почву питательных веществ, изменения влажности почвы и т.д. Он будет различным в зависимости от стадии сукцессии, в которой в данный момент времени находится комплекс почвенных микроорганизмов и других условий.
При достижении популяцией очень высокого уровня начинают действовать механизмы антибиоза со стороны почвенных микроорганизмов, которые приводят к понижению их численности (рис. ПО). Это действие хищников (простейших), паразитов (бделловибрионы), микробов антагонистов (продуценты антибиотиков). При низкой численности популяции, напротив, действуют механизмы метабиоза (почвенные гидролазы образуют легкодоступные мономеры), повышающие численность популяции. В результате действия этих механизмов популяции обычно стабилизируются на среднем уровне.
Обнаружено, что внесенная популяция даже на уровне 106-7 на 1 г почвы почти не влияет на численность бактерий, определяемую прямым микроскопическим методом. В то же время, если внести две популяции, например, микроба антагониста и чувствительного к антибиотику микроорганизма или микроба гидролитика и микроба, не обладающего гидролитической активностью (рис. 6):
В почве содержится 109, а внесли 106-7 клеток. Это связано с тем, что большинство почвенных бактерий находится в неактивном состоянии, а внесенные — в активном.
Для почвенных микробиологов нет ничего более желательного и необходимого, чем управление микробными популяциями в почве. Это могут быть микробы, разлагающие нефть, пестициды, микробы азотфиксаторы, продуценты физиологически активных веществ идр. Обычно ставится задача интенсификации деятельности определенной группы микроорганизмов, но иногда необходимо и подавление. Например, применяются специальные ингибиторы нитрификации для подавления автотрофных нит- рификаторов, проводящих первую фазу этого процесса.
Регулируя окружающие условия, можно по намеченной схеме повышать, понижать или поддерживать на определенном уровне численность популяции в почве (рис. 4):
а— популяция имеет резко выраженный максимум численности, а затем погибает; б— популяция имеет резко выраженный максимум численности, а затем стабилизируется на достаточно высоком уровне; в, д— численность популяции сохраняется на уровне внесения; г — уровень популяционной плотности повышается после внесения, и равновесие наступает при высокой популяционной плотности; N — численность клеток на I г почвы
Так, внесение простых сахаров дает возможность поднять численность популяции.
Читать онлайн:
https://myzooplanet.ru/pochvovedenie_903/ekologiya-populyatsiy-16896.html
#ЭкологияКлетки